

VE# 201904 Value Engineering Study Report - Final

Kentucky Transportation Cabinet US 641 Reconstruction (southern section) Item No. 1-314.20 Calloway County

Workshop Dates: November 18-21, 2019

Guiding Teams - Building Success

January 10, 2020

Brent A. Sweger, PE Manager, Quality Assurance Branch Division of Highway Design Kentucky Transportation Cabinet 200 Mero Street Frankfort, KY 40622 Brent.Sweger@ky.gov

RE: VE# 201904 Value Engineering Study Report – Final US 641 Reconstruction (southern section) Item No. 1-314.20 Calloway County

Dear Brent:

Transmitted herewith is an electronic copy (PDF) of the final Value Engineering Study Report for the above referenced project. In addition, attached is an electronic copy (PDF and Word) of the Implementation Form and Instructions for your use.

I appreciate your leadership and cooperation as well as that from Chris Kuntz, Gary Sharpe, Value Engineering study team and all other stakeholders. Should you have any questions, please contact me at (602) 493-1947.

Thank you for the opportunity to work with you and your team!

Sincerely,

RHA, LLC

Patrice Millor

Patrice Miller, CVS Managing Partner

6677 W Thunderbird Road, Suite K183, Glendale, Arizona 85306 (602) 493-1947 ■ (800) 480-1401 ■ (623) 275-2972 Fax Projectteamintegration.com

Contents

Section 1: Introduction	1
Value Methodology	1
Report Contents	2

Section 2: Project Description	4
Background	4
Project Corridor	5
Project Purpose	5
Project Needs	6

Section 3: Executive Summary	7
Background	7
Project/Workshop Constraints	7
Workshop Objectives	7
Performance Criteria	8
Summary Workshop Results	8
Function Analysis	9
VE Team	
Certification	
VE Punch List	

Section 4: Summary Information	
Introduction	
Value Engineering Proposals & Design Suggestions (table)	
Design Comments (table)	

Section 5: Value Engineering Proposals and Design Suggestions	19
Introduction	19
Value Engineering Proposals	
Design Suggestions	105

<u>Contents</u> (continued)

Section 6: Appendices	
Appendix A – Study Participants	
Appendix B – Pareto Cost Model and Cost Observations	
Appendix C – Function Analysis	
Appendix D – Creative Idea List and Evaluation	
Appendix E – Supporting Data	
Risk Identification	
Crash Prediction Evaluation Report	
In-brief Presentation	
Out-brief Presentation	
Agenda	

SECTION 1: INTRODUCTION

Section 1: Introduction

Value Methodology

The value methodology (Synonyms: value analysis, value engineering and value management) is a function-oriented, systematic, team approach to add customer value to a program, facility, system, or service. Improvements like performance, quality, initial and life cycle cost are paramount in the value methodology. The workshop is conducted in accordance with the methodology as established by SAVE International, the value society, and is structured using the Job Plan as outlined as follows:

• Stage 1: Pre-Study

- Identify team members
- Define workshop location
- Review project documentation
- Prepare for the Value Study (Workshop)

• Stage 2: Value Study (Workshop) Job Plan

- Phase 1: Information
 - Gather, organize and analyze data
 - Define costs and cost models
 - Define the problem/purpose of the study
 - Define study scope, define project goals and workshop goals
- Phase 2: Function Analysis
 - Define and evaluate functions
 - Define needs versus wants
- Phase 3: Creative
 - What else will perform the functions?
 - Is this function required?
- Phase 4: Evaluation
 - Rank and rate the ideas to select
 - Refine the best ideas for further development
- Phase 5: Development
 - Develop the best ideas into VE Alternatives with support and justification
- Phase 6: Presentation
 - VE study team presents results
 - Prepare and issue the report
 - Report implementation ideas

• Stage 3: Post-Study

- Implement approved alternatives
- Monitor status

Report Contents

The report provides the outcomes associated with this VE workshop and includes the following sections:

Section 1: Introduction – This section outlines the VE process and explains the content of the report.

Section 2: Project Description – This section outlines the project background, project corridor and project purpose and need.

Section 3: Executive Summary – This section is an overview that includes project background, summary of results, a list of the VE study team members and the VE punch list.

Section 4: Summary Information – This section provides an overview in table format of the VE Proposals, Design Suggestions and Design Comments.

Section 5: VE Proposals and Design Suggestions – This section includes alternatives developed as a workbook during the workshop. Each workbook contains the following information:

- Unique Identifying Number (i.e., VE-01, VE-02, etc.)
- Creative Idea Title
- Function Identification
- Baseline Assumption brief description
- Proposed Alternative brief description
- Benefits
- Risks/Challenges
- Sketches (Baseline and Proposed), if applicable
- Discussion/Justification
- Implementation Considerations, if applicable
- Initial Cost Detail
- Replacement/Salvage and Annual Cost Detail, if applicable

Section 6: Appendices

Appendix A – Study Participants

Appendix B – Pareto Cost Model and Cost Observations

Appendix C – Function Analysis

Appendix D - Creative Idea List and Evaluation

Appendix E – Supporting Data

i. Risk Identification

ii. Crash Prediction Evaluation Report

iii. Agenda

iv. In-brief Presentation

v. Out-brief Presentation

SECTION 2:

PROJECT DESCRIPTION

Section 2: Project Description

Background

In the 1970s, the Kentucky Transportation Cabinet (KYTC) began its initiative to provide the citizens of the Purchase Area with a safer, more efficient connection to the Interstate Highway System. Construction began on a four-lane improvement on US 641 between Murray and the Purchase Parkway (now I-69) in the 1980s and was opened to traffic before 1990. Following the upgrade of US 641 north of Murray, KY 80 was planned to connect the Purchase Parkway with I-24 east of Cadiz with all but one section being completed by the early 2010s. The western terminus for KY 80 is currently at KY 303 south of Mayfield, with a final section scheduled for construction in 2019 that will connect to the Purchase Parkway/I-69.

Along with the attention to KY 80 in the early 2000s, US 641 has also been a focus of the KYTC and the Tennessee Department of Transportation (TDOT) for improving north-south connectivity in the region. A project to extend the five-lane section of US 641 from Glendale Road in Murray, which transitions to a four-lane divided section before reaching the bridge over the Middle Fork of the Clarks River Bridge (KYTC Item No. 1-314.1). Concurrently, TDOT has been working to provide an improved connection from the state line south to I-40. TDOT is currently planning improvements from the state line south into Paris in Henry County, as well as additional work in Benton County, TN. When completed, these projects will provide regional connectivity between I-69, I-24, and I-40 through the rural western portions of both states.

In December 2018, the US 641 project (KYTC Item Number 1-314.20) was awarded a Better Utilizing Investments to Leverage Development (BUILD) Grant from the US Department of Transportation for \$23 million. This grant will be used to partially support the construction of 5.7 miles of the project from south of Murray to EW Miller Road in Hazel, KY, approximately ½ mile north of the Tennessee state line. Funding from the grant will not be used for construction into Tennessee. A Bi-State Agreement for construction of the remainder of the project is being developed. Under the agreement, funds will be committed by both the KYTC and TDOT for immediate construction of the project south of EW Miller Road to its southern limit between Brannon Lane/Crossland Road and Howard Road.

Project Corridor

The US 641 Project in rural western Kentucky and Tennessee will improve an existing two-lane highway to a four-lane divided highway on a parallel alignment in Kentucky and a three-lane section to be constructed on five-lane right of way in Tennessee. The proposed alternatives would construct 6.7 to 8.6 miles of improved roadway, depending on the project beginning point that is selected in Tennessee. Whether the improvement occurs on existing alignment or in a parallel corridor, existing US 641 will continue to operate as it does today by providing local access to existing businesses and residential areas. The project would serve the many agricultural and manufacturing operations in Calloway County and northwestern Tennessee by providing an improved facility meeting current design standards that will result in a significant improvement in safety and traffic operations. An improved US 641 would facilitate safer and more efficient travel and enhance accessibility and connectivity in southern Calloway and northern Henry Counties. US 641 is listed on the National Truck Network as a preferred corridor through Calloway County and western Tennessee to connect with the interstate systems. This project, in combination with planned improvements in Tennessee, will complete the critical connection to I-24, I-69, and I-40. US 641 is the only north-south route through this part of the Kentucky/Tennessee region and, with the implementation of this project, will provide an improved US 641 from I-69 into Tennessee.

Project Purpose

The purpose of this project is to provide a facility for safe and efficient movement of traffic and freight in the region, particularly between I-24, I-40 and I-69. The project corridor is a primary north-south connection between these interstates and its geometric deficiencies inhibit safe mobility in the area and does not afford travelers a modern and safe transportation facility. Narrow driving lanes with narrow shoulders that quickly drop into ditches are consistent

throughout the corridor, making driving conditions dangerous, especially during inclement weather events. Frequent access points and sightlines are also problematic, with many areas having insufficient sight distance for pulling onto or off of US 641. The dominant agricultural economy of the area results in large farming implements frequently using the roadway to access fields, especially during planting and harvesting seasons. These vehicles, coupled with limited safe passing opportunities, slow traffic and present a hazard to travelers in the corridor.

The purpose of the project is to:

- Provide safe and efficient linkage between US 641 in Murray and SR 54 in Henry County, Tennessee; and
- Improve passenger vehicle and freight connectivity with the Interstate system

Project Needs

Based on the project's purpose, three primary needs have been identified for the project:

- Correct geometric deficiencies
- Improve safety
- Improve regional connectivity

SECTION 3: EXECUTIVE SUMMARY

Section 3: Executive Summary

Background

A Value Engineering (VE) study was conducted on the preliminary design documents for the Kentucky Transportation Cabinet's US 641 Reconstruction (southern section) Project (Item No. 1-314.20, Calloway County) on November 18-21, 2019.

KYTC project manager, Chris Kuntz, and Palmer Engineering project manager, Gary Sharpe, presented the project during the Information Phase kick-off meeting on Monday, November 18, 2019. A copy of this presentation is included in Section 6: Appendices, Appendix E – Supporting Data.

Project/Workshop Constraints

The decisions makers/stakeholders identified the project/workshop constraints for the VE team during the Information Phase kick-off meeting as:

- Schedule The project funding needs to be obligated by September 30, 2020
- BUILD Grant Conformance to guidelines and requirements
- Stay within the current right-of-way lines
- Stay within the approved environmental footprint

Workshop Objectives

The workshop objectives were identified at the start of the workshop and are used to focus the VE team's efforts:

- Review Hazel Connector 5 Options
 - Option 1: Build Final Section and Barricade
 - o Option 2: Grade and Drain, Maintain Access to severed properties
 - Option 3: Build Final Section but place surface for one-lane in each direction and Barricade
 - o Option 4: Grade and Drain for Final Section, Pave only one lane in each direction
 - Option 5: Build and pave only one direction, grade and drain opposite direction
- Review pavement design

- Evaluate \$1.9M Potential Cost Savings 4 Options
 - Reduce Thickness of Cement Stabilized Roadbed; *Cost Reduction: \$309,000 (15% reduction)*
 - Reduce Median Width from 48 feet to 40 feet; Exclude areas between Tom Taylor Trail and Phillips Lane with RCUT (J-Turns); Cost Reduction: \$604,000 (12% Reduction) – (86,000 CY)
 - Reduce Mainline Driving Lane Widths from 12 feet to 11 feet; *Cost Reduction:* \$610,000
 - Reduce Outside Shoulder Width from 10 feet paved to 8 feet paved; *Cost Reduction: \$403,000*
- Review Maintenance of Traffic (MOT) plan
- Identify combinations of alternates that bring the project value (i.e., constructability, access, etc.)

Performance Criteria

During the Information Phase, the decision makers helped the VE team understand what defined project success for the US 641 Reconstruction project. These criteria were used later in the workshop by the VE team for both evaluating and developing alternatives.

- **Constructability:** construct the design efficiently
- Maintenance of traffic: local access to residents during construction
- Maintainability: ability to maintain project at appropriate O&M cost
- **Safety:** achieve an annual reduction of crashes
- Schedule: obligate funding by September 30, 2020
- Conformance to BUILD grant: what is the deviation from the BUILD grant?

Summary Workshop Results

Summary workshop results are shown in the table below.

Workshop Outcome	Number	Section of Report / Result
Ideas Brainstormed	38	See Creative Idea List (Section 6:
		Appendices, Appendix D)
Ideas Developed into VE Workbooks	24	See Section 4: Summary Information
Value Engineering Proposals, costed	17	and Section 5: Value Engineering
Design Suggestions, not costed	7	Proposals and Design Suggestions
Design Comments (DC), not developed	5	See Section 4: Summary Information
ALL VE Proposals – Menu of Savings	16	\$31,944,000 – Initial Cost and O&M

Workshop Outcome	Number	Section of Report / Result
(potentially reduces initial and/or O&M		Cost, See Section 5: Value Engineering
cost without sacrificing function and/or		Proposals and Design Suggestions
performance)		
ALL VE Proposals – Menu of Added Costs	1	(\$19,000) – Initial Cost and O&M Cost,
(at a cost add to the project, potentially		See Section 5: Value Engineering
improves function and/or performance)		Proposals and Design Suggestions

Summary tables of the Value Engineering Proposals, Design Suggestions and Design Comments are included in Section 4: Summary Information. A description and further discussion of Value Engineering Proposals and Design Suggestions are also included in Section 5: Value Engineering Proposals and Design Suggestions. The VE alternatives are categorized in one of five key (high cost and/or high risk) functions—

- Cross Creek (CC)
- Cross Gasline (CG)
- Optimize Geometry (OG)
- Support Load (SL)
- Convey Traffic (CT)

Function Analysis

Function definition and analysis is the heart of Value Engineering. It is the primary activity that separates VE from all other "improvement" programs. The objective of this phase is to ensure the entire team agrees upon the purpose of the project elements. Furthermore, this phase assists with development of the most beneficial areas for continuing the study. The data supporting the function analysis can be found in Section 6: Appendices, Appendix C.

The VE team identified the functions using active verbs and measurable nouns. This process allowed the team to truly understand all of the functions associated with the project. The basic function was defined as *Improve Safety*. A Random Function Identification Worksheet was completed and is included in Appendix C.

VE Team

- Andy Gilley, PE (Qk4)
- Justin Harrod, VIP (KYTC)
- Jason Littleton, PE (AEI)
- Robert Martin, PE (Qk4)
- Connor Schurman, EIT (KYTC)
- Brent Sweger, PE (KYTC)
- Pat Miller, CVS (RHA) VE Team Leader

Left to right: Andy, Justin, Rob, Jason, Brent, Connor

Certification

This is to verify that the Value Engineering Study was conducted in accordance with standard value engineering principles and practices.

Patrice Miller

Patrice Miller, CVS[®] RHA, LLC

VALUE ENGINEERING PUNCH LIST

PROJECT COUNTY: Calloway

DATE OF STUDY: November 18-21, 2019

VE Alternative Number	Description	Activity (Y,N,UC-Date)	Implemented Life Cycle Cost Savings	Original Cost	Alternative Cost	Initial Cost Saving	Life Cycle Cost Savings (Total Present Worth)	FHWA Categories	
VE-01	Cross Bushy Creek more perpendicular in an area outside the wetland			\$2,054,000	\$1,676,000	\$378,000	\$0		
VE-02	Cross Brushy Creek more perpendicular in an area outside the wetland at 60 mph			\$2,054,000	\$1,376,000	\$678,000	\$0		
VE-03	Eliminate the Tom Taylor Trail over the gasline (east side)			\$1,271,000	\$674,000	\$597,000	\$15,000		
VE-04	At Station 6355+00 (Heron Road), relocate the approach tie to Station 6343+00 to avoid gaslines			\$85,000	\$104,000	(\$19,000)	\$0		
VE-05	Shift the northern tie-in to US 641 to connect back to old US 641 without crossing the gaslines			\$525,000	\$155,000	\$370,000	\$10,000		
VE-06	Relocate the bridge over the tributary to Middle Fork of Clarks River to the same approximate location of the existing bridge, take the channel under the road at the new location, and run the channel change parallel to the roadway on the west side			\$517,000	\$430,000	\$87,000	\$0		
VE-07	Eliminate the Heron Road tie at Station 6355+00			\$128,000	\$17,000	\$111,000	\$0		
VE-08	Eliminate one 3-inch layer of asphalt base			\$9,495,000	\$7,122,000	\$2,373,000	\$0		
VE-09	Eliminate two 3-inch layers of asphalt base and replace with one 4.5-inch of asphalt base			\$9,495,000	\$7,913,000	\$1,582,000	\$0		
VE-10	Eliminate two 3-inch layers of asphalt base			\$9,495,000	\$4,748,000	\$4,747,000	\$0		
VE-11	Reduce the pavement on the outside shoulders from 10 feet to 4 feet			\$1,797,000	\$1,269,000	\$528,000	\$0		
VE-12	Reduce through-lane pavement width from 12 feet to 11 feet			\$10,210,000	\$9,600,000	\$610,000	\$74,000		
VE-13	Reduce median width from 48 feet to 40 feet			\$4,760,000	\$4,156,000	\$604,000	\$0		
VE-14	Reduce bridge outside shoulder width from 12 feet to 4 feet			\$5,059,000	\$4,384,000	\$675,000	\$0		
VE-15	Change from a 4-lane divided typical section to a 2-plus-1 roadway design			\$35,758,000	\$22,451,000	\$13,307,000	\$0		
VE-16	Eliminate the Hazel connector and improve the intersection at State Line Road (i.e., roundabout)			\$3,580,000	\$0	\$3,580,000	\$20,000		
VE-17	Eliminate the Hazel Connector and improve Brandon Road as an alternate northern connection			\$3,500,000	\$1,902,000	\$1,598,000	\$0		
	<u> </u>			DESIGN SUG	GESTIONS (Not	Costed)	1		
VE-18	Build land bridge over gaslines								⊢
VE-19	use different superelevation table on the approaches								

ITEM NO. 1-314.20

Rem	arks

VE Alternative Number	Description	Activity (Y,N,UC-Date)	Implemented Life Cycle Cost Savings	Original Cost	Alternative Cost	Initial Cost Saving	Life Cycle Cost Savings (Total Present Worth)	FHWA Categories	
VE-20	Use the 12-inch Cement Stabilized Roadbed								
VE-21	Set-up quantities for rock roadbed for areas where cement is not feasible (i.e., tying into old road or maintaining access across the new road during construction)								
VE-22	Set-up quantities for granular embankment								
VE-23	Eliminate the shoulder widening for guardrail and specify using 7-foot guardrail posts								
VE-24	Review the Hazel Connector Options 1-5								

Remarks

SECTION 4:

SUMMARY INFORMATION

Section 4: Summary Information

Introduction

The VE team brainstormed 38 ideas. To shorten the list, the VE team members evaluated the ideas using a two-step process. The first step identified ideas that scored as follows:

- FF Unacceptable Impacts/Fatal Flaw (Has at least one fatal/unacceptable flaw)
- O/S Out of Scope
- ABD Already Being Done
- DC Design Comment (No cost impact, no Workbook)
- DS Design Suggestion (Not costed, Workbook)

This first-step evaluation scored the ideas as appropriate to eliminate them from further evaluation. The second step scored the remaining ideas using the Value Relationship (value=function / resources) along with the idea's alignment with previously identified functions and performance criteria.

Of the 38 ideas, 17 ideas were identified for further development into Value Engineering proposals, including cost impacts. The description and further discussion of these are included in the Value Engineering Workbooks section of this report.

PERFORMANCE CRITERIA

- Constructability: construct the design efficiently
- Maintenance of traffic: local access to residents during construction
- Maintainability: ability to maintain project at appropriate O&M cost
- Safety: achieve an annual reduction of crashes
- Schedule: obligate funding by September 30, 2020
- **Conformance to BUILD grant:** what is the deviation from the BUILD grant?

Several of the proposals overlap or represent different ways of approaching the same issue. As a result, the savings/cost in the Summary of Alternatives table is not cumulative.

The Summary of Alternatives identifies cost impacts, initial, construction and any potential operations and maintenance (O&M). Cost savings are shown as positive costs while any added costs are noted in parenthesis. Total Life Cycle Costs are the summation of the initial plus O&M costs as estimated by the VE team. Life Cycle Costs are based on a 20-year life.

The VE team also developed seven Design Suggestions (DS), not costed, and identified two Design Comments (DC), not developed/costed.

The following pages list the Value Engineering proposals, Design Suggestions and Design Comments in table format.

Summary of Value Engineering Proposals & Design Suggestions

	VE	PERFORMANCE IMPACT						COST IMPACT			
IDEA NO.	Proposal No.	IDEA TITLE	Construct- ability	Maintenance of Traffic	Safety	Schedule	Conformance to BUILD Grant	Initial Cost Savings / (Add)	O&M	Total Life Cycle Cost	
СС		Cross Creek									
CC-01	VE-01	Cross Brushy Creek more perpendicular in an area outside the wetland	No impact	No impact	No impact	Impacted	No impact	\$378,000	\$0	\$378,000	
CC-03	VE-02	Cross Brushy Creek more perpendicular in an area outside the wetland at 60 mph	No impact	No impact	No impact	Impacted	No impact	\$678,000	\$0	\$678,000	
CG		Cross Gasline									
CG-01	VE-03	Eliminate the Tom Taylor Trail over the gasline (east side)	No impact	No impact	Improves	No impact	No impact	\$597,000	\$15,000	\$612,000	
CG-02	VE-18	Build land bridge over gaslines	No impact	Improves	Improves	Improves	No impact				
CG-03	VE-04	At Station 6355+00 (Heron Road), relocate the approach tie to Station 6343+00 to avoid gaslines	Impacted	No impact	No impact	Impacted	No impact	(\$19,000)	\$0	(\$19,000)	
CG-04	VE-05	Shift the northern tie-in to US 641 to connect back to old US 641 without crossing the gaslines	Impacted	No impact	No impact	No impact	No impact	\$370,000	\$10,000	\$380,000	
CG-05	VE-06	Relocate the bridge over the tributary to Middle Fork of Clarks River to the same approximate location of the existing bridge, take the channel under the road at the new location, and run the channel change parallel to the roadway on the west side	No impact	No impact	Impacted	Impacted	No impact	\$87,000	\$0	\$87,000	
CG-06	VE-07	Eliminate the Heron Road tie at Station 6355+00	No impact	No impact	Improves	Improves	No impact	\$111,000	\$0	\$111,000	

Summary of Value Engineering Proposals & Design Suggestions

	VE			PERF	ORMANCE IM	РАСТ		COST IMPAC	IMPACT	
IDEA NO.	Proposal No.	IDEA TITLE	Construct- ability	Maintenance of Traffic	Safety	Schedule	Conformance to BUILD Grant	Initial Cost Savings / (Add)	O&M	Total Life Cycle Cost
OG		Optimize Geometry								
OG-03	VE-19	Use different superelevation table on the approaches	Improves	No impact	No impact	No impact	No impact			
SL		Support Load								
SL-01	VE-20	Use the 12-inch Cement Stabilized Roadbed	No impact	No impact	No impact	No impact	No impact			
SL-02	VE-08	Eliminate one 3-inch layer of apshalt base	No impact	No impact	No impact	No impact	No impact	\$2,373,000	\$0	\$2,373,000
SL-03	VE-09	Eliminate two 3-inch layers of asphalt base and replace with one 4.5-inch of asphalt base	No impact	No impact	No impact	No impact	No impact	\$1,582,000	\$0	\$1,582,000
SL-04	VE-10	Eliminate two 3-inch layers of aphalt base	No impact	No impact	No impact	No impact	No impact	\$4,747,000	\$0	\$4,747,000
SL-05	VE-21	Set-up quantities for rock roadbed for areas where cement is not feasible	No impact	No impact	No impact	No impact	No impact			
SL-06	VE-22	Set-up quantities for granular embankment	Improves	No impact	No impact	No impact	No impact			
СТ		Convey Traffic								
CT-01	VE-11	Reduce the pavement on the outside shoulders from 10 feet to 4 feet	Impacted	No impact	No impact	No impact	No impact	\$528,000	\$0	\$528,000
CT-03	VE-12	Reduce through-lane pavement width from 12 feet to 11 feet	No impact	No impact	Marginal impact	No impact	No impact	\$610,000	\$74,000	\$684,000
CT-04	VE-13	Reduce median width from 48 feet to 40 feet	No impact	No impact	Marginal impact	No impact	No impact	\$604,000	\$0	\$604,000
CT-06	VE-14	Reduce bridge outside shoulder width from 12 feet to 4 feet	No impact	No impact	Marginal impact	No impact	No impact	\$675,000	\$0	\$675,000
CT-07	VE-23	Eliminate the shoulder widening for guardrail and specify using 7-foot guardrail posts	No impact	No impact	No impact	No impact	No impact			

Summary of Value Engineering Proposals & Design Suggestions

	VE			PERF	ORMANCE IM	РАСТ		COST IMPACT			
IDEA NO.	Proposal No.	IDEA TITLE	Construct- ability	Maintenance of Traffic	Safety	Schedule	Conformance to BUILD Grant	Initial Cost Savings / (Add)	O&M	Total Life Cycle Cost	
CT-08	VE-15	Change from a 4-lane divided typical section to a 2-plus-1 roadway design	No impact	No impact	Marginal impact	Impacted (redesign)	Impacted	\$13,307,000	\$0	\$13,307,000	
CT-11	VE-16	Eliminate the Hazel connector and improve the intersection at State Line Road (i.e., roundabout)	Impacted	Impacted	Improves	Impacted (redesign)	No impact	\$3,580,000	\$20,000	\$3,600,000	
CT-17	VE-17	Eliminate the Hazel Connector and improve Brandon Road as an alternate northern connection	No impact	No impact	No impact	No impact	No impact	\$1,598,000	\$0	\$1,598,000	
CT-18	VE-24	Review the Hazel Connector Options 1-5	N/A	N/A	N/A	N/A	N/A				

Design Comments (No Workbook Prepared)

IDEA	Idea Title						
NO.							
СТ	Convey Traffic						
CT-12	Provide a public information/education program on RCUTs, J-hooks and other innovative intersection						
CT-19	Review Maintenance of Traffic (MOT) Plan						

NOTE: Because CT-19 was a Workshop Objective, it was presented at the out-brief meeting on November 21, 2019; see slide presentation below.

CT-19: Review Maintenance of Traffic (MOT) Plan

14

Diversions

- Brandon Road
- Midway Road
- Access Points

SECTION 5:

VALUE ENGINEERING PROPOSALS & DESIGN SUGGESTIONS

Section 5: Value Engineering Proposals and Design Suggestions

Introduction

The VE team performed a Crash Prediction Evaluation to establish a baseline for comparison of improvement alternatives. This baseline specifies rural, multi-lane divided highway, two 12-foot lanes in each direction with a 4-foot inside paved shoulder, 8-foot outside paved shoulder, 2-foot gravel shoulders beyond the pavement inside and outside and a 48-foot traversable median (inside driving lane to inside driving lane). The results of this evaluation are shown in Appendix E.

The VE team developed 17 Value Engineering proposals, including cost impacts and seven Design Suggestions (DS), not costed.

The following pages detail the Value Engineering Proposals developed as part of the study by the VE study team and include the following information:

- Unique Identifying Number (i.e., VE-01, VE-02, etc.)
- Creative Idea Title
- Function Identification
- Baseline Assumption brief description
- Proposed Alternative brief description
- Benefits
- Risks/Challenges
- Cost Summary
- Baseline and Proposed Sketches, if applicable
- Discussion/Justification that includes impact to performance, if applicable
- Implementation Considerations, if applicable
- Initial Cost Detail
- Replacement/Salvage and Annual Cost Detail, if applicable

The costs used are those provided by Palmer Engineering. Where the VE team has offered alternate costs, they are provided for information only, reflective of the short duration of the VE study and should be further evaluated by KYTC. Value Engineering ideas are provided for their evaluation and implementation exclusively by KYTC.

VE-01

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	E: Cross Brushy Creek more perpendicular in an area outside the wetland										
FUNCTION:	Cross Creek										
BASELINE ASSUMPTION:											
Cross Brushy Creek with approximate 350-foot twin five-span bridges at skew with existing channel across the											
center of the wetlands.											
PROPOSED ALTE	RNATIVE:										
Cross Brushy Cre	ek with 290-foot twin bridge	es ea	st of the l	baseline	e, pe	rpendicular with e	existing channe	el, and on			
east side of wetla	ands. Maintains the same flo	oodpl	lain openi	ing as tl	ne ba	aseline.					
BENEFITS				RISKS/	CHA	LLENGES					
 Shortens bri 	dge			 Outside of proposed right-of-way 							
Minimizes in	npacts to wetlands			•	Des	ign changes					
Deduces lan	ath of project about 70 feet			Impacts project schedulo							
Reduces ien	gth of project about 70 feet										
•				•							
•				•							
-											
•				•							
•				•							
COS	ST SUMMARY		Initial Co	sts		O&M Costs	Total Life	Cycle Cost			
BASELINE ASSUN	IPTION:	\$	2,05	54,000	\$	-	\$	2,054,000			
PROPOSED ALTERNATIVE: \$ 1,6			1,67	76,000	\$	-	\$	1,676,000			
TOTAL (Baseline	less Proposed)	\$	37	78,000	\$	-	\$	378,000			
							SAV	INGS			

VALUE ENGINEERING PROPOSAL VE-01 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VALUE ENGINEERING PROPOSAL VE-01 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VE-01

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Cross Brushy Creek more perpendicular in an area outside the wetland

DISCUSSION/JUSTIFICATION:

This proposal would modify tangent section of baseline US 641 between two curves nearest to Hazel (approximate Station 6136+00 to Station 6195+00). This realignment allows the bridge over Brushy Creek to cross more perpendicular with the existing channel and minimizes impacts to two wetland locations. With the bridge crossing Brushy Creek in a more perpendicular alignment combined with the skew of the structure more aligned with the flood plain flow limits, it is hoped that the structure length can be reduced and still provide the same hydraulic efficiencies the baseline bridge crossing provides at a reduced cost.

The proposed is outside of existing the right-of-way; however, no new parcels are affected. There is a very minor reduction in the overall length of the project. There could be a risk to the project schedule in terms of possible redesign activities to evaluate a new bridge location. Also, right-of-way acquisition in this area would be delayed while this re-design is taking place.

Please note that the bridge on EW Miller just outside the limits of the current project is part of the Bridging KY program. With this proposed change, it is anticipated that the structure in question could be removed, saving KYTC the costs of replacing or repairing that structure.

The VE Team is concerned the price per square foot used to estimate the bridge costs is very low. The VE team suggests this be examined further moving forward.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-01

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Cross	Brushy	Creek more pe	erpendicular in ar	n area o	outside the w	etland		
DESIGN ELEMENT		ВА	SELINE ASSUM	PTION	PROPOSED ALTERNATIVE				
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
Brushy Creek Bridge	SF	31630	61.17	1,934,888	26100	61.17	1,596,537		
Wetland Mitigation	AC	2.4	49,500.00	118,800	1.6	49,500.00	79,200		
TOTAL				2,054,000			1,676,000		
				CWE (BASELIN	IE LESS	PROPOSED)	378,000		

Note: Total costs are rounded to the nearest thousand dollars.

SAVINGS

VE-02

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Cross Brushy Creek more perpendicular in an area outside the wetland at 60 mph										
FUNCTION:	Cross Creek										
BASELINE ASSUM	APTION:										
Cross Brushy Creek with approximate 350-foot twin five-span bridges at skew with existing channel across center of											
wetlands. Design	speed 70 mph.										
PROPOSED ALTE	RNATIVE:										
Cross Brushy Cre	ek with 250-foot twin bridge	es east of bas	eline, m	ore perpe	ndicular witl	h existing channel, and					
			baseiin		peeu oo mp						
BENEFITS			RISKS/CHALLENGES								
 Shortens bri 	dge		 Outside proposed right-of-way 								
• Eliminates ir	npacts to wetlands		 Design speed changes from 70 mph to 60 mph near Hazel 								
Reduces app	proach alignment for Hazel C	onnector	Impacts project schedule								
 Eliminates n 	eed for connection to EW M	iller North	 Major roadway and bridge design changes 								
Modifies and	d reduces approach for Bran	don Road;	•								
eliminates t	hrough movement		-								
 Flattens sup 	er-elevation in curves		•								
•			•								
CO	ST SUMMARY	Initial C	osts	0&N	A Costs	Total Life Cycle Cost					
BASELINE ASSUM	/IPTION:	\$ 2,0	54,000	\$	-	\$ 2,054,000					
PROPOSED ALTERNATIVE: \$			76,000	\$	-	\$ 1,376,000					
TOTAL (Baseline	less Proposed)	\$6	78,000	\$	-	\$ 678,000					
						SAVINGS					

VALUE ENGINEERING PROPOSAL VE-02 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VE-02

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Cross Brushy Creek more perpendicular in an area outside the wetland at 60 mph

DISCUSSION/JUSTIFICATION:

This proposal would modify 70 mph design baseline US 641 to 60 mph design curves from Stateline Road to North of Brandon Road. This realignment allows the bridge over Brushy Creek to cross approximately 550 feet northeast of baseline alignment and eliminates impacts to two wetland locations. The proposed bridge crosses Brushy Creek in a more perpendicular alignment. This alignment shift allows for a reduction in bridge length while maintaining the same flood plain flow width and hydraulic efficiencies of the baseline bridge crossing at a reduced cost.

The redesigned US 641 alignment also reduces the length of the Hazel Connector and allows for a connection at a reduced upside super elevation along US 641. The proposed 60 mph alignment also allows for a simpler east connection to Brandon road. These possibilities are not factored into the cost savings.

The proposed does come at a risk to the project schedule due to redesign time and impacts outside the baseline Rightof-Way boundary. The project team will need to evaluate status of Right-of-Way negotiations and design risks in detail before pursuing.

Please note that the bridge on EW Miller is just outside the limits of the current project is part of the Bridging KY program. With this proposed change, it is anticipated that the structure in question could be removed, saving KYTC the costs of replacing or repairing that structure.

Also, please note that the costs of the baseline structure over Brushy Creek appear to be low. If the unit price per

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-02

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Cross	Brushy	Creek more pe	erpendicular in ar	n area (outside the we	etland at 60 mph		
DESIGN ELEMENT		ВА	SELINE ASSUM	PTION	PROPOSED ALTERNATIVE				
Description	Unit Qty Unit Co		Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
Brushy Creek Bridge	SF	31630	61.17	1,934,783	22500	61.17	1,376,325		
Wetland Mitigation	AC	2.4	49,839.00	119,614					
TOTAL				2,054,000			1,376,000		
				CWE (BASELIN	IE LESS	PROPOSED)	678,000		
Note: Total costs are round	led to t	the nea	arest thousand	dollars.			SAVINGS		

VE-03

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	: Eliminate the Tom Taylor Trail over the gasline (east side)									
FUNCTION:	Cross Gasline									
BASELINE ASSUN	IPTION:									
Connect Tom Tay	lor Trail to US 641, crossing	the	gas transr	mission	line	s, providing direct	access to US 641 to			
residents along T	om Taylor east of the new a	lignr	nent.							
PROPOSED ALTE	RNATIVE:									
Remove the east	connection to Tom Taylor T	rail,	eliminatir	ng the c	ross	ing of the gas tran	smission lines. Revise			
							induntanene need.			
BENEFITS				RISKS/	′СНА	LLENGES				
 Eliminates g 	as transmission line crossing	5		•	Nor	e apparent				
Reduces ear	thwork unbalance			•						
Reduces em	bankment in place need			•						
•				•						
•				•						
•				•						
•				•						
CO	ST SUMMARY		Initial Co	sts		O&M Costs	Total Life Cycle Cost			
BASELINE ASSUN	IPTION:	\$	1,27	1,000	\$	15,000	\$ 1,286,000			
PROPOSED ALTE	RNATIVE:	\$	67	74,000	\$	_	\$ 674,000			
TOTAL (Baseline	less Proposed)	\$	59	97,000	\$	15,000	\$ 612,000			
							SAVINGS			

VALUE ENGINEERING PROPOSAL VE-03 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20

VE-03

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-03

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate the Tom Taylor Trail over the gasline (east side)

DISCUSSION/JUSTIFICATION:

The baseline condition ties US 641 to eastern segment of Tom Taylor Trail. This connection requires an additional crossing of the gas transmission lines. The Tom Taylor Trail intersection is proposed to be an Restricted Crossing U-Turn (RCUT) intersection.

The proposal is to eliminate the eastern connection to Tom Taylor Trail entirely. Coupled with the elimination of the eastern tie to Tom Taylor Trail is a vertical alignment revision on mainline. The assumption was that the mainline grade was high in the area of the intersection to help provide cover over the gas transmission lines. Eliminating the crossing allowed the VE team to lower the mainline grade to reduce embankment need and reduce earthwork imbalance. This also eliminates approximately 1200 feet of right turn lane onto Tom Taylor Trail from mainline US 641.

There is no perceived negative impact to constructability as a result of this proposal. During construction, there is no perceived negative impact to the maintenance of traffic. Although residents along the eastern portion of Tom Taylor Trail will not have a direct connection to the new US 641, they must access via existing US 641 to where it connects to the new alignment.

Long term maintenance for this will be eliminated for this 500 feet of approach; however, it would create a dead-end situation which could be annoying during snow removal.

By eliminating one leg of the intersection, overall safety will be improved. It is expected that the four-leg intersection will experience 12.3 collisions (4.4 fatal & injury, 7.9 PDO) as compared to 9.3 collisions (3.7 fatal & injury, 5.6 PDO) over a 20-year period.

There is no perceived impact to project schedule or conformance to commitments made in the BUILD Grant application as a result of this proposal.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-03

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate the Tom Taylor Trail over the gasline (east side)									
DESIGN ELEMENT		BA	SELINE ASSUI	MPTION	PROPOSED ALTERNATIVE				
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
Embankment-In-Place	СҮ	1E+05	7.00	855,435	90000	7.00	630,000		
CL3 Asph. Surf. 0.38B PG64-22	TON	258	74.06	19,107		74.06			
CL3 Asph. Base 1.00D PG64-22	TON	2060	61.94	127,596		61.94			
Crushed Stone Base	TON	887	17.10	15,168	880	17.10	15,048		
CL2 Asph. Base 1.00D PG64-22 (mainline shoulder removing right turn lane)	TON	242	56.55	13,685	505	56.55	28,558		
TC Energy Gas Line Excavation (assumed at \$1000/LF)	LF	240	1,000.00	240,000		1,000.00			
TOTAL				1,271,000			674,000		
	597,000								

Note: Total costs are rounded to the nearest thousand dollars.

SAVINGS

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	

Eliminate the Tom Taylor Trail over the gasline (east side)

Assumptions Interest/Discount Rate(%):

nt Rate(%): 3.0% Economic Life (yrs): 20

	LIFE CYCLE COST ANALYSIS					
Salva	ge & Replacement Costs		Baseline Assu	umption	Proposed A	Alternative
ltem	Description	Yr	Est Cost	Pres Worth	Est Cost	Pres Worth
1	Asphalt Resurfacing	10	20,000	14,882		
2						
3						
4						
5						
6						
7						
8						
9						
10						

Total	Salvage & Replacement Costs	20,000) 14,882		
Annu	al Costs (pres worth calculated over 20 yrs)	Baseline Ass	sumption	Proposed /	Alternative
Item	Description	Est Cost	Pres Worth	Est Cost	Pres Worth
1					
2					
3					
4					
5					

Total Annual Costs

SUMMARY	Baseline Present Worth	Proposed Present Worth
Total Present Worth	15,000	
(salvage+annual pres worth)		
RESULTS (Proposed less Baseline)	SAVINGS o	f -15,000

Notes: 1) Total Present Worth is rounded to the nearest thousand dollars, 2) Initial costs are covered in the Detail sheet.

VE-04

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	At Station 6355+00 (Heron I	Road), relocat	e the a	pproach tie to	Station 6	5343+50 to avoid gaslines
FUNCTION:			Cross	Gasline		
BASELINE ASSUN	IPTION:					
Provides access t	o Heron Road at Station 635	5+00.				
PROPOSED ALTE	RNATIVE:					
		-3130.				
BENEFITS			RISKS/	CHALLENGES		
Minimizes co	onstruction in proximity of g	aslines	•	Lengthens ap	proach r	oad by 150 feet
•			•	Modified righ project sched	t-of-way ule	impacts which could affect
•			•			
•			•			
•			•			
•			•			
•			•			
CO	ST SUMMARY	Initial Co	sts	O&M Co	sts	Total Life Cycle Cost
BASELINE ASSUM	IPTION:	\$ 8	35,000	\$	-	\$ 85,000
PROPOSED ALTE	RNATIVE:	\$ 10	04,000	\$	-	\$ 104,000
TOTAL (Baseline	less Proposed)	\$ (1	l9,000)	\$	-	\$ (19,000)
	- r <i>i</i>	L' (-	771	' ·		COST

VALUE ENGINEERING PROPOSAL VE-04 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VALUE ENGINEERING PROPOSAL VE-04 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VE-04

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	At Station 6355+00 (Heron Road), relocate the approach tie to Station 6343+50 to avoid gaslines
DISCUSSION/JUS	TIFICATION:
Relocating the He working in proxir	eron Road approach reduces the project risk to schedule and constructability associated with nity of the gas lines.
This proposal inte where in the pro-	roduces risk to schedule in the form of changing right-of-way impacts to Parcel 61 depending on cess discussions are with this property owner.
No impact to safe	ety, Maintenance of Traffic (MOT), or conformance to BUILD Grant.
IMPLEMENTATIO	ON CONSIDERATIONS:
None apparent.	

VE-04

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: At Station 6355+00 (Heron Road), relocate the approach tie to Station 6343+5 avoid gaslines									
DESIGN ELEMENT		BA	SELINE ASSUI	MPTION	PROPOSED ALTERNATIVE				
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
CL3 Asph. Surf. 0.38B PG64-22	TON	131	74.06	9,702	161	74.06	11,924		
CL3 Asph. Base 1.00D PG64-22	TON	1096	61.94	67,886	1349	61.94	83,557		
Crushed Stone Base	TON	406	17.10	6,943	499	17.10	8,533		
TOTAL				85.000			104 000		
				05,000			104,000		
Note: Total costs are round	led to t	he nea	arest thousand	CWE (BASELIN d dollars.	E LESS	PROPOSED)	(19,000) COST		

Note: Total costs are rounded to the nearest thousand dollars.

VE-05

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

Г

TITLE:	Shift the northern tie-in to US 641 to connect back to old US 641 without crossing the gaslines									
FUNCTION:		Cross Gasline								
BASELINE ASSUMPTION:										
Construct US 641	L Connector from new alignm	nent to existir	ng alignr	ment	t tying to the new	alignment at Station				
6421+30 and cro	ssing the gas transmission lir	nes creating a	"T" inte	ersed	tion at existing US	641. Construct typical				
section of two 12	2-foot lanes and 4-foot paved	d shoulders.								
PROPOSED ALTE	RNATIVE:									
Relocate US 641	Connector to approximate st	tation 6434+1	0 using	a ty	pical section of tw	o 12-foot lanes and 2-foot				
paved shoulders.										
BENEEITS			RISKS/	сна	LIENGES					
 Eliminates g 	asline crossing at existing US	641	•	Cros	ses unnamed trib	utary to Middle Fork of				
connector		011		Clar	ks River					
Provides con	nnection to existing US 641 a	s a free-flow	•	Sho	rtens turn lane ont	to US 641				
movement	6									
Constructed	within current proposed rig	ht-of-way	•	Viol	ates access spacing	g				
						-				
Shortens co	nnection to existing US 641		٠							
Dead-ends	on remnant of existing US 64	1	•							
•			•							
•										
СО	ST SUMMARY	Initial Co	sts		O&M Costs	Total Life Cycle Cost				
BASELINE ASSUM	APTION:	\$ 52	25,000	\$	17,000	\$ 542,000				
PROPOSED ALTE	RNATIVE:	\$ 15	5,000	\$	7,000	\$ 162,000				
TOTAL (Baseline	less Proposed)	\$ 37	70,000	\$	10,000	\$ 380,000				
						SAVINGS				

VALUE ENGINEERING PROPOSAL VE-05 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20

VALUE ENGINEERING PROPOSAL VE-05 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20

VE-05

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Shift the northern tie-in to US 641 to connect back to old US 641 without crossing the gaslines

DISCUSSION/JUSTIFICATION:

The baseline for the US 641 Connector crosses the TC Energy gas transmission lines and is approximately 980 feet in length. The intersection configuration at the tie to existing US 641 would be a three-leg "T" intersection.

The proposal is to relocate this connection to the new alignment such that it ties to existing US 641 prior to the gas line location and provides a direct connection from the old route to the new. This new alignment will cross the existing location of the unnamed tributary to Middle Fork of Clarks Creek requiring a new bridge structure be built on this tie-in. This bridge structure can be eliminated with the inclusion of VE-06 in the project. There is no bridge in the cost estimate because the proposal assumes that VE-06 is also incorporated. VE-06 can be implemented on its own; however, VE-05 is not economical without the inclusion of VE-06.

Due to the nature of the tie-in to old US 641, the constructability of the proposed alignment will be more difficult than in the baseline as work will need to be done in the existing driving lanes; however, this work would be completed after the new alignment is opened to traffic greatly reducing the impact to the traveling public. Assuming the traffic has been shifted to the new alignment, maintenance of traffic will consist of maintaining access to the Brandon property which is currently served from Brandon Road to the east of the existing alignment.

The proposed alignment would be approximately 400 feet in length, marginally decreasing the long-term maintenance of the facility, however, snow removal will be aided by allowing trucks free-flow onto US 641 as opposed to removing snow from a dead-end street.

There is no perceived impact to project schedule or conformance to commitments made in the BUILD Grant application as a result of this proposal. Safety of the connection is not anticipated to appreciably change. You would be removing an intersection which will improve safety but we do not anticipate and appreciable gains.

The cost savings associated with this proposal are based on the assumption that VE-06 is implemented as well. Without implementing that proposal, another bridge will be required making this proposal uneconomical.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-05

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Shift the northern tie-in to US 641 to connect back to old US 641 without crossin the gaslines									
DESIGN ELEMENT		BA		MPTION	PROPOSED ALTERNATIVE				
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
Embankment-In-Place	CY	5328	7.00	37,296	9715	7.00	68,005		
CL2 Asph. Surf. 0.38D PG64-22	TON	69	62.33	4,301	15	62.33	935		
CL3 Asph. Surf. 0.38B PG64-22	TON	258	74.06	19,107	125	74.06	9,258		
CL2 Asph. Base 1.00D PG64-22	TON	277	56.55	15,664	115	56.55	6,503		
CL3 Asph. Base 1.00D PG64-22	TON	2136	61.94	132,304	1000	61.94	61,940		
Crushed Stone Base	TON	2131	17.10	36,438	500	17.10	8,550		
TC Energy Gas Line Excavation (assumed at \$1000/LF)	LF	280	1,000.00	280,000					
TOTAL				525,000			155,000		
		I		CWE (BASELIN	IE LESS	PROPOSED)	370,000		

Note: Total costs are rounded to the nearest thousand dollars.

SAVINGS

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Sh ga	nift the northe Islines	ern tie-in	to US 64	41 to co	nnect ba	ack to old US 641 without crossing the
Assumptions							
/	/ . / . / .	0.00/	-		•		

Interest/Discount Rate(%): 3.0% Economic Life (yrs): 20

LIFE CYCLE COST ANALYSIS

Salva	ge & Replacement Costs		Baseline Ass	umption	Proposed Alternative		
ltem	Description	Yr	Est Cost	Pres Worth	Est Cost	Pres Worth	
1	Asphalt resurfacing	10	23,500	17,486	10,000.0	7,441	
2							
3							
4							
5							
6							
7							
8							
9							
10							

Total	Salvage & Replacement Costs	23,500	17,486	10,000	7,441	
Annu	al Costs (pres worth calculated over 20 yrs)	Baseline Assu	umption	Proposed Alternative		
Item	Description	Est Cost	Pres Worth	Est Cost	Pres Worth	
1						
2						
3						
4						
5						

Total Annual Costs

SUMMARY	Baseline Present Worth	Proposed Present Worth
Total Present Worth	17,000	7,000
(salvage+annual pres worth)		
RESULTS (Proposed less Baseline)	SAVINGS of	f -10,000

Notes: 1) Total Present Worth is rounded to the nearest thousand dollars, 2) Initial costs are covered in the Detail sheet.

VE-06

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

	Relocate the bridge over the tributary to Middle Fork of Clarks River to the same approximate										
TITLE:	location of the existing brid	ge, take the	channel	under the road at the	new location, and run the						
	channel change parallel to t	annel change parallel to the roadway on the west side									
FUNCTION:		Cross Gasline									
BASELINE ASSUM	IPTION:										
The baseline con	dition realigns the unnamed	l tributary to	the Mid	dle Fork of Clarks Rive	r at the existing US 641						
Bridge and then s	sends the water to an existir	ng 90° bend l	before be	eing conveyed beneath	n the new US 641 Bridge						
and alignment.											
PROPOSED ALTE	RNATIVE:										
Relocate the pro	posed bridge and construct	a channel ch	ange of t	he unnamed tributary	to the Middle Fork of						
Clarks River to th	e west side of the new US 6	41 alignmen	t.								
BENEFITS			RISKS/	CHALLENGES							
 Improves str 	ream stability		•	Additional length of c	hannel change						
			_	No. 1. Colored a contra co							
•			•	New bridge location r	lage location requires revised						
				geotechnical investiga	ation ising concorns						
•			•	Bridge in 6.8% supere	elevation - icing concerns						
•			•								
•			•								
•			•								
•			•								
CO	ST SUMMARY	Initial C	Costs	O&M Costs	Total Life Cycle Cost						
BASELINE ASSUM	IPTION:	\$.	517,000	\$-	\$ 517,000						
PROPOSED ALTE	RNATIVE:	\$ 4	430,000	\$ -	\$ 430,000						
TOTAL (Baseline	less Proposed)	\$	87,000	Ş -	\$ 87,000						
					SAVINGS						

VE-06

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-06

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-06

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

Relocate the bridge over the tributary to Middle Fork of Clarks River to the same approximateTITLE:location of the existing bridge, take the channel under the road at the new location, and run the
channel change parallel to the roadway on the west side

DISCUSSION/JUSTIFICATION:

The baseline condition would impact approximately 1520 linear feet of existing channel with about 410 linear feet of channel change. It was assumed that the entire 1520 linear feet of existing channel was included in the in-lieu fees. The baseline bridge is located in a horizontal and vertical tangent.

The proposed condition would require approximately 1265 linear feet of channel change and impact. There is no perceived impacts to constructability, maintenance of traffic or conformance to the BUILD Grant commitments.

The proposed bridge location could pose an increased impact to long-term maintenance. The proposed bridge location is in a curve with 6.8% superelevation and snow and ice removal would be critical for this structure. Coupled with this increase in maintenance, there would be a perceived impact to safety in wet or icy conditions.

There could be an impact to project schedule insofar as it would require new geotechnical investigation as well as design of a new structure. The relocated structure would be located in both horizontal and vertical curves, however, there would not be any superelevation transition across the bridge.

This VE proposal can be coupled with VE-05 (Shift the northern tie to US 641 to the northwest to connect back to old US 641 without crossing the gaslines) to provide further cost savings.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-06

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Reloca approx the ne	ite the kimate w loca	bridge over th location of th tion, and run t	ne tributary to Mic e existing bridge, t the channel chang	ldle Fo take th e paral	rk of Clarks R e channel und llel to the roa	iver to the same der the road at dway on the west
	side				•		
DESIGN ELEMENT		ВА	SELINE ASSUN	ΛΡΤΙΟΝ		PROPOSED AI	LTERNATIVE
Description	Unit	Qty	Unit Cost \$ TOTAL \$ Qty Unit Cost \$				TOTAL \$
Stream In-Lieu Fees	LF	1520	340.00	516,800	1265	340.00	430,100
TOTAL				517,000			430,000
				CWE (BASELIN	E LESS	PROPOSED)	87,000
Note: Total costs are round	led to t	he nea	arest thousand	l dollars.			SAVINGS

VE-07

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	TITLE: Eliminate the Heron Road tie at Station 6355+00								
FUNCTION:			Cross	Gasline					
BASELINE ASSUN	IPTION:								
Provides access t	o existing Heron Road east o	of Baseline US	641.						
PROPOSED ALTE	RNATIVE:								
BENEFITS			RISKS/	CHALLENGES					
Eliminates 6	50-foot approach road		Reduces connectivity						
Eliminates ri	ght turn lane from mainline		•						
Reduces right	nt of way impacts (1.7 acres)		•						
Reduces cor	struction in proximity of gas	lines	•						
Reduces cor mainline	flict points - left turns from	and onto	•						
•			•						
•			•						
CO	ST SUMMARY	Initial Co	sts	O&M Costs	Total Life Cycle Cost				
BASELINE ASSUN	IPTION:	\$ 12	28,000	\$ -	\$ 128,000				
PROPOSED ALTE	RNATIVE:	\$ 1	7,000	\$ -	\$ 17,000				
TOTAL (Baseline	less Proposed)	\$ 11	1,000	\$-	\$ 111,000				
					SAVINGS				

VALUE ENGINEERING PROPOSAL VE-07 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VALUE ENGINEERING PROPOSAL VE-07 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VE-07

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate the Heron Road tie at Station 6355+00

DISCUSSION/JUSTIFICATION:
The VE team felt the Heron Road approach could be eliminated without much loss connectivity for the local
community since Midway Road access to US 641 is less than one mile away. Eliminating the Heron Road approach
reduces risk associated with construction in the proximity of the gas lines.
Safety - Not constructing the Heron Road access reduces conflicts at a location where left-turns would occur onto and from the mainline.
This proposal additionally helps with project schedule and provides a savings to long term maintenance by reducing pavement resurfacing needs and frequencies.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-07

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Elimin	ate the	e Heron Road t	tie at Station 6355	+00			
DESIGN ELEMENT		ВА	SELINE ASSUN	PROPOSED AL	ED ALTERNATIVE			
Description	Unit Qty Unit Cost \$			TOTAL \$	Qty	Unit Cost \$	TOTAL \$	
Approach								
Embankment-In-Place	CY	1510	7.00	10,570				
CL3 Asph. Surf. 0.38B PG64-22	Ton	131	74.06	9,702				
CL3 Asph. Base 1.00D PG64-22	Ton	1096	61.94	67,886				
Crushed Stone Base	Ton	406	17.10	6,943				
Right Turn Lane								
CL3 Asph. Surf. 0.38B PG64-22	Ton	53.74	74.06	3,980	39	74.06	2,888	
CL3 Asph. Base 1.00D PG64-22	Ton	429.9	61.94	26,627	156	61.94	9,661	
Crushed Stone Base	Ton	149.8	17.10	2,562	271.8	17.10	4,647	
TOTAL				128,000			17,000	
				CWE (BASELIN	E LESS	PROPOSED)	111,000	

Note: Total costs are rounded to the nearest thousand dollars.

SAVINGS

VE-08

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Eliminate one 3-inch layer of asphalt base								
FUNCTION:				Suppo	rt Load				
BASELINE ASSUM	APTION:								
Four layers of 3-i	nch asphalt base.								
Fliminata ana 2 i	KNATIVE:								
Eliminate one 3-i	nch layer of base.								
BENEFITS				RISKS/	CHALLENG	ies			
Reduces pay	vement construction cost			Possible reduction in pavement life cycle					
 No change it 	n fatique cracking			•	Increases	total navem	nent deform	nation	
•				•	Large incre	ease in ther	mal crackin	g	
•				•					
•				•					
•				•					
•				•					
			nitial Co	ctc	08.1/	Costs	Total	ifa Cucla Cast	
BASELINE ASSUM		ر		35 000	لي الم الا	-	े राजाता L	9 495 000	
PROPOSED AITE	RNATIVE:	Ś	7.12	2.000	Ś	-	Ś	7,122,000	
TOTAL (Baseline	less Proposed)	Ś	2.37	73.000	Ś	_	Ś	2.373.000	
		Ý	2,57	5,000	*		· ·		

VE-08

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-08

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-08

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate one 3-inch layer of asphalt base

DISCUSSION/JUSTIFICATION:

In terms of constructability, eliminating one 3-inch layer of base will lower the total pavement thickness by 3 inches (the two pavement designs and their respective layer thicknesses are seen below). This would, conceivably, reduce paving time. It would also reduce compaction time. As for maintenance of traffic, no impact would be expected. However, when considering maintainability, many factors arise. As seen in the left graphic below, KYTC has expected pavement performance values. The highlighted yellow column is the current pavement design, which has each performance criteria being met, relatively speaking. As for the graphic on the bottom right, the design without one 3-inch layer of base, the performance parameters do not always meet requirements. For example, the asphalt thermal cracking is over triple what the current pavement design is. However, the asphalt-bottom up fatigue cracking did not change and the asphalt top-down fatigue cracking decreased slightly. In terms of maintainability specifically, the proposed new pavement design could generate higher annual maintenance costs due to the expected increase in cracking. More cracking would result in a need for more maintenance. This anticipated increase in cracking, and perhaps room for other "failures," could also impact safety. When considering safety, cracking, dips, and bumps could negatively affect the vehicle itself or pose as a hazard for drivers. As for schedule, a slight decrease in overall days of construction could be seen. However, this would be minor. Lastly, one positive impact of eliminating one 3-inch layer of base is the reduction in cost. A little over \$2.3 million could be saved by using this proposed alternative.

Layer PG 64-22 PG 64-22 PG 64-22 PG 64-22 PG 64-22 PG 64-22	Trial Designs 1 Asphalt Surface 2 Asphalt Base 3 Asphalt Base 4 Asphalt Base 5 Asphalt Base 6 Crushed Stone Base 7 Cement Stabilized Readbes		1 increas 1.5 3.0 3.0 3.0 3.0 4.0 12.0		Layer	Trial Designs 1 Asphalt Surface 2 Asphalt Base 3 Asphalt Base 4 Asphalt Base 5 Asphalt Base 6 Crushed Stone Base 7 Cement Stabilized Roadbes Total Pavement Thickness	VE #1A incres 1.5 3.0 0.0 0.0 4.0 12.0 23.5	VE #18 inches 1.5 3.0 3.0 0.0 0.0 6.0 12.0 25.5	VE #2A inches 1.5 3.0 3.0 0.0 4.0 12.0 26.5)
KYTC Pavement Performan Terminal IRI (160.00) Total Pavement Permanent D Asphalt Botton-Up Fatigue C Asphalt Thermal Cracking (fe Asphalt Top-Down Fatigue C Permanent Deformation As	Total Pavement Thickness ce R heformation (0.25 inch) tracking (% lane area – \$0%) at / mile – 1,000 feet) racking (%eet / mile –2,000 feet phat Only (0.25 inch)	YTC waababiity 95% 95% 96% 90% 90%	29.5 158.93 0.32 1.86 847.73 280.18 0.07	KYTC Pave Tersinal IRI Total Pavem Asphalt Bot Asphalt The Asphalt The Permanent I	nent Per (169.00) ent Perm am-Up Fe mai Crac Down Fe Ieformati	Toranance Parameters anent Deformation (0.25 incit) tigue Cracking (% lane area – 10%) ting (feet / mile – 1,000 feet) figue Cracking (feet / mile –2,000 feet on – Asphelt Only (0.25 inch)	KYTC Railability 95% 95% 90% 90% 90%	179.94 0.49 1.86 2452.77 257.42 0.15	179.57 0.48 1.86 2452.77 257.55 0.16	176.55 0.42 1.96 2425.19 268.07 0.13

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-08

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Elimina	te one 3-ii	nch layer of asp	halt base				
DESIGN ELEMENT		BASE	LINE ASSUMPT	PROPOSED ALTERNATIVE				
Description	Unit	Qtv	Unit Cost \$	ost \$ TOTAL \$ Qty Unit Cost \$		Unit Cost \$	TOTAL \$	
CL3 ASPH BASE 1.00D PG64-22	TON	153301	61.94	9,495,464	114975	61.94	7,121,552	
TOTAL				9,495,000			7,122,000	
Note: Total costs are round	led to th	ne nearest	thousand dolla	CWE (BASE	LINE LESS	PROPOSED)	2,373,000 SAVINGS	

VE-09

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Eliminate two 3-inch layers of asphalt base and replace with one 4.5-inch of asphalt base							
FUNCTION:	:			Support Load				
BASELINE ASSUMPTION:								
Four layers of 3-i	nch asphalt base.							
PROPOSED ALTERNATIVE:								
			.	or busc.				
BENEFITS				RISKS/CHALLENGES				
Reduces cost				 Increase in total pavement deformation 				
Little to no increase in fatigue cracking			•	 Large increase in thermal cracking (well above threshold) Describe reduction in payament life cycle 				
•				POSSIBLE LE		pavement me cy	/cie	
•								
• •								
•			•	•				
•			•	•				
CO	ST SUMMARY	Initial C	osts	0&M	Costs	Total Life C	ycle Cost	
BASELINE ASSUN	IPTION:	\$ 9,4	195,000	\$	-	\$	9,495,000	
PROPOSED ALTE	ERNATIVE: \$ 7,9		913,000	\$	-	\$	7,913,000	
TOTAL (Baseline	less Proposed)	\$ 1,5	582,000	\$	-	\$	1,582,000	
						SAVIN	IGS	

VE-09

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-09

Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

TITLE: Eliminate two 3-inch layers of asphalt base and replace with one 4.5-inch of asphalt base

DISCUSSION/JUSTIFICATION:

Many considerations of this proposed alternative are similar to those in the proposed alternative of VE-08. In terms of constructability of VE-09, eliminating two 3-inch layers of base and replacing that with one 4.5-inch of base will lower the total pavement thickness by 1.5 inches (the two pavement designs and their respective layer thicknesses are seen below). This would, conceivably, reduce paving time. It would also reduce compaction time and decrease the amount of time vehicles would not be using the roadway. As for maintenance of traffic, no impact would be expected. However, when considering maintainability, many factors arise. As seen in the left graphic below, KYTC has expected pavement performance values. The highlighted yellow column is the current pavement design, which has each performance criteria being met, relatively speaking. As for the graphic on the right, the design without two 3-inch layers of base and instead one of 4.5-inches, the performance parameters do not always meet requirements. For example, the asphalt thermal cracking is over triple what the current pavement design is. The asphalt top-down fatigue cracking increased slightly, as well. However, the asphalt-bottom up fatigue cracking did not change. In terms of maintainability specifically, the proposed new pavement design could generate higher annual maintenance costs due to the expected increase in cracking. More cracking would result in a need for more maintenance. This anticipated increase in cracking, and perhaps room for other "failures," could also impact safety. When considering safety, cracking, dips, and bumps could negatively affect the vehicle itself or pose as a hazard for drivers. As for schedule, a slight decrease in overall days of construction could be seen. However, this would be minor. Lastly, one positive impact of eliminating two 3-inch layers of base and replacing with one 4.5-inch layer is the reduction in cost. A little over \$1.5 million could be saved by using this proposed alternative.

PG 64-22 PG 64-22 PG 64-22 PG 64-22 PG 64-22 PG 64-22	Trial Designs Layer 1 Asphak Sarface 2 Asphak Base 3 Asphak Base 4 Asphak Base 5 Asphak Base 6 Croshed Stone Base 7 Cement Stabilized Roadbeo Total Pavement Thickness		1 inches 1.5 3.0 3.0 3.6 3.0 4.0 12.0 29.5	Trial Designs Layer 1 Asphalt Sarface 2 Asphalt Sase 3 Asphalt Base 4 Asphalt Base 5 Asphalt Base 6 Crushed Store Base 7 Cement Stabilized R Total Pavoment Thick	cadbed kness	VE #3A inches 1.5 3.0 3.0 4.5 0.0 4.0 12.0 28.0
KYTC Pavame Terminal IRI (1 Totel Pavamer Asphalt Bolton Asphalt Therm Asphalt Top-Do Permanent De	Int Performance 60.00) R Permanent Deformation (0.25 incb) -Up Fatigue Cracking (% lane area ~ 10%) al Cracking (feat / mile ~ 1.000 feet) own Fatigue Cracking (feat / mile ~2.000 feet formation ~ Asphalt Only (0.25 inch)	KYTC Reliability 95% 95% 90% 90% 90%	158,93 0.32 1.86 847.73 250,18 0.07	KYTC Pavement Performance Parameters 8 Terminal RI (160.00) Total Pavement Pernanent Deformation (0.25 incb) Asphatt Bottom-Up Fatigue Cracking (% lane area – 10%) Asphatt Thermal Cracking (leat / mia – 1,000 feet) Asphatt Top-Down Fatigue Cracking (leat / mia –2,000 feet Permanent Deformation – Asphalt Only (0.26 inch)	YTC (allability 95% 95% 95% 90% 90% 90%	174.61 0.37 1.96 2411.40 304.03 0 11

IMPLEMENTATION CONSIDERATIONS:

KYTC Pavement design branch would need to be consulted to determine the acceptability of thermal cracking estimations outside their recommended thresholds.

VE-09

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	E: Eliminate two 3-inch layers of asphalt base and replace with one 4.5-inch of asphalt base						
DESIGN ELEMENT		BAS	ROPOSED ALT	TERNATIVE			
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$
CL3 ASPH BASE 1.00D PG64-22	TON	153301	61.94	9,495,464	127750	61.94	7,912,835
TOTAL				9,495,000			7,913,000
	-	-		CWE (BASE	LINE LESS	PROPOSED)	1,582,000
Note: Total costs are round	ed to tł	ne neare	st thousand d	ollars.			SAVINGS

VE-10

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Eliminate two 3-inch layers of asphalt base								
FUNCTION:			Suppo	ort Load					
BASELINE ASSUM	/IPTION:								
Four layers of 3-i	nch asphalt base.								
PROPOSED ALTE	RNATIVE:								
Eliminate two 3-i	nch layers of base.								
BENEFITS			RISKS/	CHALLENGES					
Reduces cos	t		 Increase in total pavement deformation 						
• Little to no i	ncrease in fatigue cracking		Large increase in thermal cracking (well above						
			threshold)						
•			 Possible reduction in pavement life cycle 						
•			•						
•			•						
•			•						
•			•						
CO	ST SUMMARY	Initial Co	sts	O&M Costs	Total Life Cycle Cost				
BASELINE ASSUM	/IPTION:	\$ 9,49	95,000	\$-	\$ 9,495,000				
PROPOSED ALTE	RNATIVE:	\$ 4,74	18,000	\$-	\$ 4,748,000				
TOTAL (Baseline	less Proposed)	\$ 4,74	17,000	\$-	\$ 4,747,000				
					SAVINGS				

VE-10

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-10

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-10

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate two 3-inch layers of asphalt base

DISCUSSION/JUSTIFICATION:

Many considerations of this proposed alternative are similar to those in the proposed alternative of VE-08. In terms of constructability of VE-10, eliminating two 3-inch layers of base, will lower the total pavement thickness by 6 inches (the two pavement designs and their respective layer thicknesses are seen below). This would, conceivably, reduce paying time. It would also reduce compaction time and decrease the amount of time vehicles would not be using the roadway. As for maintenance of traffic, no impact would be expected. However, when considering maintainability, many factors arise. As seen in the left graphic below, KYTC has expected pavement performance values. The highlighted yellow column is the current pavement design, which has each performance criteria being met, relatively speaking. As for the graphic on the right, the design without two 3-inch layers of base, the performance parameters do not always meet requirements. For example, the asphalt thermal cracking is over triple what the current pavement design is. The asphalt top-down fatigue cracking decreased slightly. The asphalt-bottom up fatigue cracking did not change. In terms of maintainability specifically, the proposed new pavement design could generate higher annual maintenance costs due to the expected increase in cracking. More cracking would result in a need for more maintenance. This anticipated increase in cracking, and perhaps room for other "failures," could also impact safety. When considering safety, cracking, dips, and bumps could negatively affect the vehicle itself or pose as a hazard for drivers. As for schedule, a slight decrease in overall days of construction could be seen. However, this would be minor. Lastly, one positive impact of eliminating two 3-inch layers of base is the reduction in cost. A little over \$4.7 million dollars could be saved by using this proposed alternative. This is the largest reduction in cost of VE-08, VE-09 and VE-10.

PG 64-22 PG 64-22 PG 64-22 PG 64-22 PG 64-22 PG 64-22	Trial Designs Layar 1 Asphak Surface 2 Asphak Base 3 Asphak Base 4 Asphak Base 5 Asphak Base 6 Crushed Stone Base 7 Cenent Stabilized Roadbed Total Pavement Thickness		inches 1.5 3.0 3.0 3.0 3.0 4.0 12.0 29.5	Trial Designs Layer PG 64-22 1 Asphalt Surface PG 64-22 2 Asphalt Base PG 64-22 3 Asphalt Base PG 64-22 4 Asphalt Base PG 64-22 5 Asphalt Base PG 64-23 5 Asphalt Base PG 64-24 5 Asphalt Base PG 64-25 5 Asphalt Base PG 64-26 5 Asphalt Base PG 64-27 5 Asphalt Base PG 64-28 5 Asphalt Base PG 64-29 5 Asphalt Base PG 64-20 5 Asphalt Base PG 64-21 5 Asphalt Base PG 64-22 5 Asphalt Base PG 64-23 5 Asphalt Base PG 64-24 5 Asphalt Base PG 64-25 5 Asphalt Base PG 64-26 5 Asphalt Base PG 64-27 5 Asphalt Base PG 64-28 5 Asphalt Base PG 64-29 5 Asphalt Base PG 64-20 5 Asphalt Base PG 64-21 5 Asphalt Base PG 64-22 5 Asphalt Base <		VE #1A enches 1.5 3.0 0.0 0.0 4.0 12.0 23.5
KYTC Pavement Ternical IRI (160 Total Pavement P Asphalt Bottom-U Asphalt Thermal (Asphalt Top-Dow Permanent Defor	Parformance 00) wmanent Deformation (0.25 inch) p Fatigue Cracking (% lake area ~ 10%) Cracking (fest / mile – 1,000 leet) Fatigue Cracking (fest / mile –2,000 leet nation – Asphalt Only (0.25 inch)	KYTC Reliability 95% 95% 90% 90% 90%	158.93 0.32 1.86 847.73 280.18 0.07	KYTC Pavement Performance Parameters Terminal IRI (160.00) Total Pavement Permanent Deformation (0.25 inch) Asphalt Bottom-Up Fatigue Cracking (% Iane area ~ 10%) Asphalt Thermal Cracking (feet / mile ~ 1,000 feet) Asphalt Top-Down Fatigue Cracking (feet / mile ~2,000 feet Permanent Deformation ~ Asphalt Only (0.25 inch)	KYTC Railabäiky 95% 95% 95% 95% 90% 90%	179,94 0.49 1.86 2452.77 257,42 0.15

IMPLEMENTATION CONSIDERATIONS:

KYTC Pavement design branch would need to be consulted to determine the acceptability of thermal cracking estimations outside their recommended thresholds.

VE-10

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Elimina	ate two 3	-inch layers of	f asphalt base			
DESIGN ELEMENT		OPOSED ALTI	ERNATIVE				
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$
CL3 ASPH BASE 1.00D PG64-22	TON	153301	61.94	9,495,464	76650.5	61.94	4,747,732
TOTAL				9,495,000			4,748,000
				CWE (BAS	ELINE LESS	S PROPOSED)	4,747,000
Note: Total costs are rounded	to the	nearest	housand dolla	ars.			SAVINGS

VE-11

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Reduce the pavement on the outside shoulders from 10 feet to 4 feet								
FUNCTION:	Convey Traffic								
BASELINE ASSUM	/IPTION:								
The outside shou	Ilders are 10 feet wide and	fully pav	ed.						
PROPOSED ALTE	RNATIVE:								
The outside shou	Ilders will be 10 feet wide,	with 4 fe	et of which w	ill be pave	d.				
				-					
BENEFITS			RISKS/	CHALLEN	GES				
Reduces cos	st significantly		•	Some deg	radation of	use as emergency	/ pull off		
•			•						
•			•						
•			•						
•			•						
•			•						
•			•						
		l la i	tial Casta	081	A Casta	Total Life Cur	la Cast		
		ini ć	1 707 000	c U&I		c iotal Life Cyc	1 707 000		
DRODOSED AITE	RNΔTIVE·	ې د	1 260 000	ې د	-	ې د	1 269 000		
TOTAL (Baseline	less Proposed)	\$	528 000	\$	-	<u>ج</u>	528 000		
		7	520,000	Ý		SAVING	320,000 is		

VE-11

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Reduce the pavement on the outsi	de shoulders from 10 feet to 4 feet	
	SKETCH OF BASE	ELINE ASSUMPTION & PROPOSED ALTERNATIVE]
	В	aseline 10' Paved Shoulder	
		Surface 1.5"	
		Asphalt base 3"	
		Ashphalt base 3"	
		CSB	
	Propos	ed 4' Paved + 6' Rock Shoulder	
	Surface 1.5"		
	Asphalt base 3"		
	Asphalt base 3"		
		СЅВ	

VE-11

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Reduce the pavement on the outside shoulders from 10 feet to 4 feet

DISCUSSION/JUSTIFICATION:

The primary purpose of the shoulder along this section of highway is to provide a recoverable area for roadway departure and the occasional emergency parking. Additionally, because the entrances are widely spaced from the partial control of access, there are very few locations that service vehicles such as garbage or mail trucks will need to use a shoulder. Therefore, full shoulder pavement width is not necessary for the anticipated functions.

The proposal is to provide a 10-foot wide shoulder that will include 4 feet of pavement and with the remaining 6 feet built from crushed stone base (CSB.) The area with pavement will help both with long term stability of the travel lane structure, limit the raveling on the edge of pavement (if it were narrower), provide adequate space for a rumble strip and give a recoverable area on pavement should a driver drift out the travel lane.

This alternative will have little impact on project safety performance compared to the proposed design. Comparing the proposed alternative to the baseline proposed design, below are the projected crashes over a twenty period analysis timeframe:

Total Crashes: 152 (140 baseline) +8.6% Fatal + Injury: 83 (76 baseline) +9.2% Fatal + Serious Injury: 55 (51 baseline) +7.8% PDO: 70 (64 baseline) +9.4%

From the Highway Safety Manual (HSM), Crash Modification Factors (CMFs) for right (outside) shoulder width on divided highways only apply to the paved shoulder width. The HSM states in Section 11.7.2 that "The effects of unpaved right shoulders on divided roadway segments and of left (median) shoulders of any width or material are unknown." From this statement, the VE team can determine that the paved shoulder portion of the outside shoulder (of any type) would have a beneficial impact on roadway safety over the absence of a graded shoulder. While this proposal does decrease the paved shoulder portion, it does not reduce the total graded shoulder. Seeing this, the VE team reasoned that there will be a marginal impact on roadway safety as a result of changing paved shoulder width for gravel or earth shoulder width. In addition, there is no supporting evidence to show that a 10-foot paved shoulder (as proposed) is any safer than an 8' paved shoulder; running analysis on both configurations would produce the same expected collisions as the CMF for a 10-foot shoulder as in relation to an 8' shoulder is recommended to be 1.0.

The lesser paved shoulder width may be viewed as a "constructability" concern at the tie-ins because the extra width can be used during part width construction to keep traffic moving. For the rest of the project, since it is cross country, that should not be an issue.

VE-11

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Reduce the pavement on the outside shoulders from 10 feet to 4 feet

DISCUSSION/JUSTIFICATION:

Calculations and Assumptions:

Total Length of project is 5.666 miles (29,916.48 feet). Combine Cardinal and Non-Cardinal sides for a total 59,832.96 feet. From looking at drawing plans, about 11,700 feet have been observed to not include 10 foot paved shoulders.

Total length with 10' shoulders = 48,124

Unit prices: 1" Asphalt Surface = \$3.43/SY, 1" Asphalt Base= \$3.11/SY, and 1" CSB= \$0.98/SY.

For 10-foot paved shoulders, ((48,132.96*10)/9)= 53,481 SY.

For 4-foot paved shoulders, ((48,132.96*4)/9)= 21,392.4 SY.

For 6 foot unpaved shoulders, ((48,132.96*6)/9)= 32,088.6 SY.

For 10-foot paved and 4-foot paved shoulders, the depth looks like: 1.5" Surface Layer, 2x 3" Asphalt Base Layers, and a 10" CSB Layer.

For 6-foot unpaved shoulders, the depth looks like: a 17.5" CSB Layer.

See Cost Sheet for continuation.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-11

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Reduce	the pave	ment on the ou	utside shoulders f	rom 10 fe	et to 4 feet		
DESIGN ELEMENT		BASE		ΓΙΟΝ	PROPOSED ALTERNATIVE			
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$	
Surface Layer @ 1.5"	SY	53481	5.14	274,892	21392.4	5.14	109,957	
Asphalt Base @ 6"	SY	53481	18.66	997,955	21392.4	18.66	399,182	
CSB @ 10"	SY	53481	9.80	524,114	21392.4	9.80	209,646	
CSB @ 17.5" for the 6 feet of					32088.6	17.15	550,319	
				4 707 000			1 200 000	
				1,797,000			1,269,000	
				CWE (BASE	LINE LESS	S PROPOSED)	528,000	
Note: Total costs are round	led to th	ne neares	t thousand doll	ars.			SAVINGS	

Note: Total costs are rounded to the nearest thousand dollars.

VE-12

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Reduce through-lane pavement width from 12 feet to 11 feet										
FUNCTION:				Conve	y Tra	affic					
BASELINE ASSUM	IPTION:				-						
Construct 12-foo	t through lanes.										
PROPOSED ALTE	RNATIVE:										
Construct 11-foo	t through lanes.										
The <i>Option 3, Pot</i> This alternate is t	tential Cost Savings was put he evaluation of the option.	fort	th by the c	lesign t	eam	for the Value Eng	inee	ring team to evaluate.			
BENEFITS	BENEFITS RISKS/CHALLENGES										
Reduces pavement need				•	Mai	rginal increases in	collis	sion frequency			
Reduces ear	thwork			•							
•				•							
•				•							
•				•							
•				•							
•				•							
COS	ST SUMMARY		Initial Co	sts		O&M Costs	-	Total Life Cycle Cost			
BASELINE ASSUM	IPTION:	\$	10,21	0,000	\$	893,000	\$	11,103,000			
PROPOSED ALTE	RNATIVE:	\$	9,60	0,000	\$	819,000	\$	10,419,000			
TOTAL (Baseline	less Proposed)	\$	61	0,000	\$	74,000	\$	684,000			
								SAVINGS			

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-12

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Reduce through-lane pavement width from 12 feet to 11 feet

DISCUSSION/JUSTIFICATION:

The baseline condition proposes to construct four 12-foot lanes throughout the entirety of the project.

The proposed condition is to decrease the lane width from 12 feet to 11 feet for the entirety of the project.

There are no perceived impacts to constructability, maintenance of traffic or project schedule.

The BUILD Grant application did propose to construct 12-foot lanes, and this may be an issue with the grant administrators. It is the VE team's opinion that the change in lane width does not alter the scope of the project.

There is a minor savings to long term maintenance due to decreased asphalt resurfacing needs.

IHSDM Analysis

This is a marginal detriment to expected collisions. The baseline analysis predicted 139.8 (75.8 fatal & injury, 64.0 PDO) collisions over 20 years. The analysis using 11-foot lanes instead of 12-foot predicted 141.9 (77.0 fatal and injury, 64.9 PDO) collisions over the same 20-year time period.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-12

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	TITLE: Reduce through-lane pavement width from 12 feet to 11 feet										
DESIGN ELEMENT		ВА	PROPOSED A	LTERNATIVE							
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$				
CL3 Asph. Surf. 0.38B PG64-22	Ton	16068	74.06	1,189,996	, 15079	74.06	1,116,751				
CL3 Asph. Base 1.00D PG64-22	Ton	1E+05	61.94	8,211,014	1E+05	61.94	7,721,193				
Crushed Stone Base	Ton	47320	17.10	809,172	44564	17.10	762,044				
TOTAL				10,210,000			9,600.000				
				_0,0,000			2,223,000				
L				CWE (BASELIN	E LESS	PROPOSED)	610,000				
Note: Total costs are round	ied to f	the nea	rest thousand	dollars.			SAVINGS				

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:

Reduce through-lane pavement width from 12 feet to 11 feet

Assumptions Interest/Discount Rate(%):

est/Discount Rate(%): 3.0% Economic Life (yrs): 20

	LIFE CYCLE COST ANALYSIS						
Salva	ge & Replacement Costs		Baseline Assu	umption	Proposed Alternative		
Item	Description	Yr	Est Cost	Pres Worth	Est Cost	Pres Worth	
1	Asphalt Resurfacing	10	1,200,000	892,913	1,100,000.0	818,503	
2							
3							
4							
5							
6							
7							
8							
9							
10							

Total	Salvage & Replacement Costs	1,200,000	892,913	1,100,000	818,503		
Annu	al Costs (pres worth calculated over 20 yrs)	Baseline Ass	umption	Proposed /	Proposed Alternative		
Item	Description	Est Cost	Pres Worth	Est Cost	Pres Worth		
1							
2							
3							
4							
5							

Total Annual Costs

SUMMARY	Baseline Present Worth	Proposed Present Worth
Total Present Worth	893,000	819,000
(salvage+annual pres worth)		
RESULTS (Proposed less Baseline)	SAVINGS of	f -74,000

Notes: 1) Total Present Worth is rounded to the nearest thousand dollars, 2) Initial costs are covered in the Detail sheet.

VE-13

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Reduce median width from 48 feet to 40 feet									
FUNCTION:				Conve	y Traffic					
BASELINE ASSUMPTION:										
Construct 48-foot median (inside driving lane to inside driving lane).										
PROPOSED ALTE	RNATIVE:									
Construct 40-foo	t median (inside driving lane	to i	nside driv	ing lane	e). **cos	ted alternate				
As an alternative,	, construct 30-foot median (i	insid	e driving	lane to	inside d	riving lane).				
The Original Date										
The Option 2, Pot	tential Cost Savings was put	t for	th by the	design 1	eam for	the Value Eng	gineering team to evaluate			
	s the evaluation of the option									
BENEFITS				RISKS/	CHALLE	NGES				
Reduces ear	thwork			•	Margina	al increases in	collision frequency			
•				•	Additio	nal pavement	width needed at U-turn			
•				•	location	15				
				•						
•				•						
•				•						
•				•						
				•						
•				•						
		1								
CO	ST SUMMARY	-	Initial Co	sts	08	AM Costs	Total Life Cycle Cost			
BASELINE ASSUM		Ş	4,76	0,000	<u>ې</u>	-	\$ 4,/60,00			
PROPOSED ALTE		Ş	4,15	6,000	<u>ې</u>	-	\$ 4,156,00			
IUIAL (Baseline	iess Proposea)	Ş	60	4,000	\$	-	> 604,000 SAVINCS			

VE-13

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-13

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Reduce median width from 48 feet to 40 feet									
DISCUSSION/JUS	TIFICATION:									
The baseline con	dition proposes to construct a 48-foot median throughout the entirety of the project.									
The proposed co project.	The proposed condition is to decrease the median width from 48 feet to 40 feet (or 30 feet) for the entirety of the project.									
There are no per	ceived impacts to constructability, maintenance of traffic or project schedule.									
The BUILD Grant administrators.	The BUILD Grant application did propose to construct a 48 feet median, and this may be an issue with the grant administrators. It is our opinion that the change in median width does not alter the scope of the project.									
There is a minor	savings to long-term maintenance due to decreased maintenance footprint.									
This is a margina collisions. The a collisions over th	l detriment expected collisions. The baseline analysis predicted 139.8 (75.8 fatal & injury, 64.0 PDO) nalysis using 40-foot median instead of 48-foot predicted 142.1 (77.1 fatal and injury, 65.0 PDO) e same 20-year time period.									
IHSDM Analysis The analysis usin the same 20-yea	g 30-foot median instead of 48-foot predicted 143.5 (77.9 fatal and injury, 65.6 PDO) collisions over r time period.									
It should be note increase in inters substantial incre	d that in the collision analysis, intersections were not considered. One would not expect much section-related collisions associated with decreasing the median width to 40 feet; however more ases may be possible when decreasing to 30-foot median.									
None apparent.	JN CONSIDERATIONS:									

VE-13

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE: Reduce median width from 48 feet to 40 feet									
DESIGN ELEMENT		BAS	ELINE ASSUM	PROPOSED ALTERNATIVE					
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$		
Embankment-In-Place	СҮ	680062	7.00	4,760,434	593688	7.00	4,155,816		
TOTAL				4,760,000			4,156,000		
				CW/F (BASE			604 000		
Note: Total costs are rounded to the nearest thousand dollars.							SAVINGS		

VE-14

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Reduce bridge outside shoulder width from 12 feet to 4 feet							
FUNCTION:			Conve	y Traffic				
BASELINE ASSUN	IPTION:							
Bushy Creek Brid	ge and Tributary to Clarks Ri	ver Bridge ha	ve an o	utside shou	lder width	of 12 feet.		
PROPOSED ALTE	RNATIVE:							
The width of the	outside shoulder of the brid	ges will be red	duced t	o 4 feet.				
BENEFITS			RISKS/	CHALLENG	ES			
Reduces stru	uctures cost		Design exception would be needed					
Reduces ma	intenance cost over time		Reduces safety					
 Possible red 4) 	uction in number of beams r	needed (5 to	•					
•			•					
•			•					
•			•					
•			•					
CO	ST SUMMARY	Initial Co	sts	0&M	Costs	Total Life Cycle Cost		
BASELINE ASSUN	IPTION:	\$ 5,05	59,000	\$	-	\$ 5,059,000		
PROPOSED ALTE	RNATIVE:	\$ 4,38	34,000	\$	-	\$ 4,384,000		
TOTAL (Baseline	less Proposed)	\$ 67	75,000	\$	-	\$ 675,000		
						SAVINGS		

VE-14

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-14

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-14

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Reduce bridge outside shoulder width from 12 feet to 4 feet

DISCUSSION/JUSTIFICATION:

The design typical bridge section shows an additional 2-foot outside the "shoulder" width. The total shoulder width on the bridge is 12' and the total inside shoulder width on the bridge is 6' as currently designed. As an alternative, change both the inside and outside shoulder widths to 4' total width resulting in a 10' bridge width reduction. The proposed sketch shows the additional 2 feet still included but have been marked out. Also, if 11-foot lanes were constructed, that would eliminate and additional 2 feet from each bridge (one-foot from each of the 2 lanes on each bridge).

When considering constructability of the newly design bridge with smaller outside shoulders, a "Design Exception" would need to be implemented, which is further explained below. The reduction in shoulder width would also, in terms of constructability, reduce cost. A savings of \$675,000 was estimated for this 8-foot reduction. With the reduction of outside shoulder width comes a potential for a reduction in number of bridge beams (from 5 to 4 due to the reduced overall width of the bridge was 45 feet to 35 feet). In terms of maintenance of traffic, smaller shoulders would make MOT potentially more difficult. Shoulders can, temporarily, act as travel lanes for vehicles during construction. If the shoulders were only 4 feet, this would not be as feasible. 12-foot lanes can be satisfactory for a traveled lane. A diversion or detour may need to be implemented instead. As for maintainability, a smaller shoulder could potentially mean a reduction in cracks, dumps, dips, etc. simply because of probability; less pavement means less probability for "failure." A 4-foot shoulder is also not as "welcoming" for a vehicle to stop on as a 12-foot shoulder; this could mean less vehicles using the shoulder. Maintainability, however, would still be similar for both 12foot and 4-foot shoulders. In terms of safety, a reduction in safety is possible with a smaller shoulder. Smaller shoulders can yield less room for vehicles to make emergency stops or maneuvers. Drivers also expect wider traveled lanes and more clear zone. Also, drivers thrive on consistency and if the shoulders before the bridges were 12 feet, then a reduction in shoulders on the bridges would be a change in driver expectation. Lastly, in terms of schedule, no major impact is expected. A potential in overall time (days) spent constructing the shoulders may be expected to increase.

IMPLEMENTATION CONSIDERATIONS:

Transportation agencies face an ever-increasing complex challenge of balancing available resources with priorities and needs. "Performance-Based Practical Design" challenges agencies to think beyond cost-based choices by identifying measurable or predicted performance information used to establish a relative performance value of the options, and ultimately better understand the investment value of their choices. This typically will go hand-in-hand with "Design Exceptions." A "Design Exception" is a documented decision to design a highway element or a segment of highway to design criteria that do not meet minimum values or ranges established for that highway or project. Reducing the outside shoulder width from 12 feet to 4 feet would become a "Design Exception."

VE-14

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE: Reduce bridge outside shoulder width from 12 feet to 4 feet											
DESIGN ELEMENT		ВА	SELINE ASSUM	PTION		PROPOSED ALTERNATIVE					
Description	Unit Qtv I		Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$				
Brushy Creek Bridge	LS	1	1,934,888.00	1,934,888	1	\$ 1,676,902.93	1,676,903				
Trib To Clarks River Bridge	LS	1	1,786,050.00	1,786,050	1	1,547,910.00	1,547,910				
Clarks River Bridge	LS	1	1,337,962.17	1,337,962	1	1,159,567.21	1,159,567				
TOTAL				5,059,000			4,384,000				
				CWE (B	ASELII	NE LESS PROPOSED)	675,000				
Note: Total costs are round	led to t	he nea	arest thousand	dollars.			SAVINGS				

VE-15

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Change from a 4-lane divided typical section to a 2-plus-1 roadway design							
FUNCTION:								
BASELINE ASSUM	IPTION:							
The existing desig	gn includes four travel lanes,	wide should	ers, and	a 48-foot dep	pressed m	nedian.		
PROPOSED ALTE	RNATIVE:							
Use a 2+1 design	approach where there is a s	ingle travel la	ine in ea	ach direction a	and a pas	sing lane that alternates		
BENEFITS			RISKS/	CHALLENGES				
 Significantly 	reduces cost		• Differs from the current description in the BUILD					
			grant agreement					
 Provides ade 	equate level of service		Will take extra time in design to modify					
Reduces long	g term pavement and right-c	of-way	 Local leaders may not buy into the concept 					
maintenance	e costs							
 Ties neatly in 	nto Tennessee DOT plans to	the south	•					
•			•					
•			•					
•			•					
COS	ST SUMMARY	Initial Co	osts	0&M C	osts	Total Life Cycle Cost		
BASELINE ASSUM	IPTION:	\$ 35,75	58,000	\$	-	\$ 35,758,000		
PROPOSED ALTE	RNATIVE:	\$ 22,4	51,000	\$	-	\$ 22,451,000		
TOTAL (Baseline	less Proposed)	\$ 13,30	07,000	\$	-	\$ 13,307,000		

VALUE ENGINEERING PROPOSAL VE-15 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-15

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Change from a 4-lane divided typical section to a 2-plus-1 roadway design
--------	---

DISCUSSION/JUSTIFICATION:

A two lane roadway has adequate capacity to handle the current levels of traffic - just over 7000 vehicles per day. However, for Class 1 highways, LOS is determined by two measures of effectiveness:

- 1. Average travel speed (ATS)
- 2. Percent time spent following (PTSF)

By using a 2+1 roadway design, the LOS can be improved compared to a standard two-lane highway and meet the traffic needs for this project. It can also be built in a manner that would allow a future four-lane divided highway within the purchased right-of-way should traffic volumes increase to deem it necessary.

The design would include two 12-foot travel lanes, 12-foot passing lane, 4-foot flush median. One shoulder would be 10 feet (4 feet of pavement and 6 feet of CSB) and the other 4-foot paved only. This design will provide construction cost savings.

With approximately 6 miles of project length, four to five transitions can be designed. Because there are not many cross roads or entrances with significant volumes, there is flexibility in the configuration of the transitions. Additionally, with such flat terrain, slopes will not need to be a major deciding factor on the configuration. At this time, it may make sense to taper out to two lanes heading northbound from the southern end and two lanes heading southbound from the northern end.

This proposal will also tie in nicely with a three-lane section that will be the initial build typical section in Tennessee.

The VE team recognizes that this design concept deviates significantly from the original proposal and agreement for the BUILD grant. It would require FHWA headquarters approval to modify this design. With such a tight timeframe on design, it may not be possible to make this change and meet the schedule requirements. One opportunity to overcome this time constraint would be to use a Design Build procurement method.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-15

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Chang	e from	a 4-lane divid	ed typical section	to a 2-	plus-1 roadw	ay design			
DESIGN ELEMENT		BA	SELINE ASSUN	ΛΡΤΙΟΝ	PROPOSED ALTERNATIVE					
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$			
Pavement (65% of original design)	LS	1	18,195,694.00	18,195,694	0.65	18,195,694.00	11,827,201			
Earthwork (~70% of original design)	LS	1	680,062.00	680,062	0.7	680,062.00	476,043			
CSB	LS	1	2,514,161.00	2,514,161	0.7	2,514,161.00	1,759,913			
Subbase Stabilization (65% of original design)	LS	1	1,679,142	1,679,142	0.65	1,679,142	1,091,442			
Drainage (not included in this calculation)										
Strucutres (3 bridges)	LS	1	5,058,900.00	5,058,900	0.5	5,058,900.00	2,529,450			
Strucuture Rip Rap	LS	1	374,655.00	374,655	0.5	374,655.00	187,328			
Fuel Adjustment & Asphalt Adjustment ((65% of est)	LS	1	944,277.00	944,277	0.7	944,277.00	660,994			
Contingency	LS	1	3,919,222.00	3,919,222	0.7	3,919,222.00	2,743,455			
Mobilization & demobilization	LS	1	2,392,013	2,392,013	0.7	1,679,142	1,175,399			
TOTAL				35,758,000			22,451,000			
	CWE (BASELINE LESS PROPOSED) 13,307,000									

Note: Total costs are rounded to the nearest thousand dollars.

SAVINGS

VE-16

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Eliminate the Hazel Connector and improve the intersection at State Line Road (i.e., roundabout)								
FUNCTION:	Convey Traffic								
BASELINE ASSUM	/IPTION:			-					
To connect the n	ew alignment to existing US	641, the pro	posed d	esign	includes a connec	ctor road on new			
alignment.									
PROPOSED ALTE	RNATIVE:								
Connect the new	alignment along State Line	Road. Elimir	ate the	new o	connector road.				
BENEFITS			RISKS	/CHA	LLENGES				
 Significant c 	ost savings		Challenge of high speed approach and traffic						
C C	C C		control at intersection of new route and State						
				Line	Road				
Reduces lon	g-term maintenance		•						
 Eliminates u 	nused or underutilized right	-of-way	•						
•			•						
•			•						
•			•						
•			•						
со	ST SUMMARY	Initial C	osts		O&M Costs	Total Life Cvcle Cost			
BASELINE ASSUM	/IPTION:	\$ 3,5	580,000	\$	20,000	\$ 3,600,000			
PROPOSED ALTE	RNATIVE:	\$	-	\$	-	\$ -			
TOTAL (Baseline	less Proposed)	\$ 3,5	580,000	\$	20,000	\$ 3,600,000			
		-		-		SAVINGS			

VALUE ENGINEERING PROPOSAL VE-16 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VE-16

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate the Hazel Connector and improve the intersection at State Line Road (i.e., roundabout)

DISCUSSION/JUSTIFICATION:

This recommendation would eliminate the construction of the connector that is proposed between the new alignment and existing US 641. The proposed connector primarily would serve a temporary condition until Tennessee DOT builds the portion of the new road to State Line Road from the south. This is estimated to be 10 years from now.

The primary benefit of this alternative is to provide significant cost savings. It also justifies the construction of this section of the new alignment because traffic will use it.

To accommodate traffic flow, the planned alignment would be built from approximately Station 6160+00 to Station 6130+00. The four travel lanes would be tapered to two as it approached the southern termini at State Line Road. A single lane compact roundabout could be installed to facilitate free flow movement to and from State Line Road while not impeding the through movement on the existing road. It would be expected that the roundabout would be removed and the intersection converted to an R-CUT or J-turn design once Tennessee ties into this location.

The section of State Line Road that would be used is approximately 1/4 mile long and would have a 35 mph speed limit. This roadway environment is comparable to the existing US 641 in and south of Hazel.

Modifications to the intersection at State Line Road and existing US 641 will need to be made. A four-way stop or compact roundabout are two options that will better facilitate the moderately heavy northbound left-turn movement that traffic would follow. Either of these options would also allow for easy change for local traffic flow once the mainline US 641 traffic in Tennessee is shifted to the new alignment.

The travel time between the proposed design and this VE alternative will be negligible. The total distance from station 6160+00 to the intersection of US 641/State Line Road is just under a mile for both options.

The cost estimate for the Connector Road was provided by Palmer Engineering. It includes construction, right-of-way, and utility location. Although this option would reduce the initial cost of pavement construction due to less lanes and some additional cost for a roundabout, they would be relatively small and were not included in this write-up.

IMPLEMENTATION CONSIDERATIONS:

The increase in traffic on State Line Road will be a change for the few residents whose homes access the road. However, introduction of the roundabout may introduce lower running speeds in front of their homes.

This alternative will also decrease the traffic volume through the business area of Hazel compared to the proposed design during this interim period.

Heavy truck turning movements will need to be accommodated at both intersections. Some minor right-of-way may need to be acquired to facilitate these turns.

No improvements to State Line Road appear to be warranted at this time.

VE-16

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Elimina (i.e., ro	Eliminate the Hazel Connector and improve the intersection at State Line Road (i.e., roundabout)								
DESIGN ELEMENT		ВА	TERNATIVE							
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$			
Connector Road	LS	1	1 3,580,000.00 3,580,000			\$-	\$-			
TOTAL				3,580,000						
		L		CWE (BASELIN	E LESS	PROPOSED)	3,580,000			
Note: Total costs are rounded to the nearest thousand dollars.							SAVINGS			
Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Eliminate the Hazel Connector and improve the intersection at State Line Road (i.e., roundabout)						
Assumptions							
Interest/Discount Rate(%):	3.0%	Economic Life (yrs):	20			

LIFE CYCLE COST ANALYSIS

Salva	ge & Replacement Costs		Baseline Assu	umption	Proposed /	Alternative
Item	Description	Yr	Est Cost	Pres Worth	Est Cost	Pres Worth
1	Resurfacing: 1" (2800'x32'/9)x (\$3.11/SYx2/3 + \$1.02)	15	30,900	19,834		
2						
3						
4						
5						
6						
7						
8						
9						
10						

Total	Salvage & Replacement Costs	30,900	19,834		
Annu	al Costs (pres worth calculated over 20 yrs)	Baseline Ass	umption	Proposed /	Alternative
Item	Description	Est Cost	Pres Worth	Est Cost	Pres Worth
1					
2					
3					
4					
5					

Total Annual Costs

SUMMARY	Baseline Present Worth	Proposed Present Worth
Total Present Worth	20,000	
(salvage+annual pres worth)		
RESULTS (Proposed less Baseline)	SAVINGS of	f -20,000

Notes: 1) Total Present Worth is rounded to the nearest thousand dollars, 2) Initial costs are covered in the Detail sheet.

VE-17

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Eliminate the Hazel Connector and improve Brandon Road as an alternate northern connection						
FUNCTION:			Conve	y Traffic			
BASELINE ASSUM	IPTION:			-			
Provide free flow	access to the north side of I	Hazel by build	ing a ne	ew connector	road to r	elocated US 6	41 north of
Hazel.	Hazel.						
PROPOSED ALTER	RNATIVE:						
Provide access to	north side of Hazel using the	e existing Bra	ndon R	oad corridor.	Improve	Brandon Roa	d to
accommodate the	e increase in traffic.						
BENEFITS			RISKS/	CHALLENGES	5		
Utilizes exist	ing right-of-way of Brandon	Road to	•	Does not pro	ovide a fre	e flow access	to the north
make roadwa	ay connection north of Haze	l; eliminates		side of Hazel			
purchasing n	ew right-of-way for the new	connector					
Reduces con:	struction costs for building t	he northern	Potential increase in utility relocations along				
access to Haz	zel; widen and provide struc	tural overlay	Brandon Road to accommodate widening				
to Brandon R	load to accommodate increa	ase in traffic					
 Ultimately re 	duces length of roadway to	be	Requires bridge/drainage structures to be				
maintained b	y improving an existing facil	lity rather	widened				
than constru	cting a new one, when an in	nproved					
Brandon Roa	d serves the same purpose						
•	• •						
• •							
•			•				
COS	T SUMMARY	Initial Co	sts	0&M C	osts	Total Life	Cycle Cost
BASELINE ASSUM	IPTION:	\$ 3,50	0,000	\$	-	\$	3,500,000
PROPOSED ALTER	RNATIVE:	\$ 1,90	2,000	\$	-	\$	1,902,000
OTAL (Baseline less Proposed) \$ 1,598,000 \$ - \$ 1,598,000					1,598,000		
						SAV	INGS

VALUE ENGINEERING PROPOSAL VE-17 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VALUE ENGINEERING PROPOSAL VE-17 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VE-17

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate the Hazel Connector and improve Brandon Road as an alternate northern connection

DISCUSSION/JUSTIFICATION:

The purpose of the Hazel Connector in part appears to provide better access to the north side of Hazel for both the temporary and ultimate construction build out of the relocation of US 641. This proposed new roadway would have tangible benefits in terms of enhanced access, but an improvement to existing Brandon Road will also provide many of the same benefits and opportunities for northern access to Hazel at a significantly less cost. Granted, the northern access via Brandon Road would not be free flow. However, the cost of the new connector is over \$3.5 million, including right-of-way.

The estimated improvements to Brandon Road can be done for \$2,000,000 (including a contingency for utility relocations and minimal right-of-way). Also, with this proposal, one side of the Brandon Connector (approximately 800 feet) can be eliminated. It is anticipated that the value of this work would easily cover the costs for constructing the J-hooks proposed for mainline to address the proposed modifications for access.

The eastern portion of Brandon Road at the US 641 intersection (along with existing US 641) is currently in the flood plain. However, with construction of the new US 641, access to Hazel during flood events will be maintained, even if Brandon Road floods.

In regards to future maintenance commitments, if the new connector is built, KYTC or Calloway County will be responsible for maintenance of this roadway as well as Calloway County will still own Brandon Road. Ultimately, best case scenario from maintenance perspective for both KYTC and Calloway County is only an improved Brandon Road is in the roadway system.

IMPLEMENTATION CONSIDERATIONS:

Right-of-way for the project is currently being purchased. If right-of-way for the Hazel Connector has already been purchased, this option is less attractive from an overall budgetary perspective.

VE-17

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Elimina northe	ate the ern con	e Hazel Conne inection	ctor and improve l	Brando	on Road as an	alternate
DESIGN ELEMENT		BA	SELINE ASSUI	MPTION		PROPOSED AL	.TERNATIVE
Description	Unit	Qty	Unit Cost \$	TOTAL \$	Qty	Unit Cost \$	TOTAL \$
Hazel Connector (including ROW)	LS	1	3,500,000.00	3,500,000			
Brandon Road Improvement - Structure Replacement & Widening (USING BRIDGING KY COST ESTIMATES)	SF				900	400.00	360,000
Brandon Road Improvement - Drainage Structure Widening (assume 72" pipe)	LF				24	278.00	6,672
Brandon Road Improvement - 3400 feet Pavement, 22 Feet wide with 2 feet shoulders	TON				3430	60.00	205,800
Brandon Road Improvement - 3400 feet CSB, 22 Feet wide with 2 feet shoulders (12 feet widening)	TON				1200	17.00	20,400
Brandon Road Improvement - 3400 feet Cement Stabilize, 22 Feet wide with 2 feet shoulders (12 feet widening)	SY				4800	2.34	11,232
Brandon Road Improvement - 3400 feet Cement Stabilize, 22 Feet wide with 2 feet shoulders (12 feet widening)	TON				140	101.20	14,168
Earthwork	СҮ				4800	7.00	33,600
Utilities	LS				1	500,000.00	500,000
ROW	LS				1	300,000.00	300,000
30% contingency	LS				1	450,000.00	450,000
TOTAL				3,500,000			1,902,000
				CWE (BASELIN	E LESS	PROPOSED)	1,598,000

Note: Total costs are rounded to the nearest thousand dollars.

SAVINGS

DESIGN SUGGESTIONS

VE-18

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

r

TITLE:	Build land bridge over gaslines							
FUNCTION:		Cross Gasline						
BASELINE ASSUM	/IPTION:							
Cross gaslines wi ditch lines. Prote of temporary cro	th seven feet minimum cover over top of ection for crossing gaslines must be maint ssing protection.	lines under pavement and five feet minimum cover in the ained at all times during construction, including the use						
PROPOSED ALTE	RNATIVE:							
at approximately	at approximately Station 6420+00 in lieu of raising the profile grade of mainline.							
BENEFITS		RISKS/CHALLENGES						
 Reduces em roadway cor 	bankment in place required for mainline nstruction	Need concurrence from TC Energy this is acceptable						
 Installation the cost (and 	of land bridge would eliminate most of disafety concerns) for the equipment	•						
crossing the	gas lines during construction	•						
•		•						
•		•						
•		•						
•		•						

DESIGN SUGGESTION

VE-18

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Build land bridge over gaslines

DISCUSSION/JUSTIFICATION:

The VE team suggests consideration be given to constructing a land bridge over the perpendicular gas line crossings at Tom Taylor Trail and the northern approach road at approximately Station 6420+00. As detailed in the VE proposal VE-03, if the profile did not have to be raised in the area of the Tom Taylor approach, the embankment in place could be reduced approximately 30,000 cubic yards, with a value of at least \$210,000 using a unit price of \$7 per cubic yard. Based on recent bids for earthwork in the area of the project (\$14 per cubic yard), the VE team believes that finding ways to minimize the earthwork will be extremely cost effective. The use of the land bridge, if agreed to by TC Energy, is worth considering. The land bridge, if installed early, would eliminate the need for temporary crossing preparation work during construction (the contractor would drive over the bridge once installed) and would greatly decrease the likelihood of an accident involving the line once it is protected. The VE team recommends the Design Team explore this option further with TC Energy.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-19

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Use different superelevation table on the approaches					
FUNCTION:	0	ptimize Geometry				
BASELINE ASSUM	/IPTION:					
The approach road design speed varies, appear to use the 8% superelevation tables throughout.						
PROPOSED ALTE	RNATIVE:					
Consider use of t	Consider use of the 4% or 6% superelevation tables for the approaches with stop conditions prevalent.					
BENEFITS		RISKS/CHALLENGES				
 Use of 4% o design allow superelevation 	r 6% superelevation tables as part of the /s more flexibility with the ions for the horizontal curves	None apparent				
 Allows smoor road interse prevalent 	other grading transitions at approach ctions, especially with stop conditions	•				
•		•				
•	•					
•	• •					
•		•				
•		•				

DESIGN SUGGESTION

VE-19

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

Г

TITLE:	Use different superelevation table on the approaches					
DISCUSSION/JUS	STIFICATION:					
The VE team sug to the supereleve curves for the ap	The VE team suggests consideration be given to a reduced design speed for the approach roads, primarily in regards to the superelevations being used for the horizontal curves. It appears the 8% super tables are being used when the curves for the approach roads end with stop conditions. The 4% and 6% super elevations will allow for smoother					
transitions with i	no compromises in safety.					
MPLEMENTATIO	ON CONSIDERATIONS:					
None apparent.						

VE-20

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Use the 12-inch Cement Stabilized Roadbed					
FUNCTION:		Support Load				
BASELINE ASSUN	/IPTION:					
In their 11/18/2019 presentation, Palmer Engineering included a Pavement Design spreadsheet that laid out some potential pavement designs. The recommended design reduced the Cement Stabilized Roadbed (CSR) from 12 inches (recommended in Geotechnical report) to 8 inches.						
PROPOSED ALTE	RNATIVE:					
The VE team reco The <i>Option 1, Po</i> r It was decided no	The VE team recommends keeping the CSR as 12 inches and not to change to an 8-inch CSR. The <i>Option 1, Potential Cost Savings</i> was put forth by the design team for the Value Engineering team to evaluate. It was decided not to consider this option.					
BENEFITS		RISKS/CHALLENGES				
Long term st	tability of the subbase	Additional material (cement) cost				
 Additional statistical failure 	tability to prevent pavement cracking or	•				
•						
•	•					
•						
•	•					
•		•				

DESIGN SUGGESTION

VE-20

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Use the 12-inch Cement Stabilized Roadbed
--

DISCUSSION/JUSTIFICATION:

It is the VE team's suggestion to keep the 12 inches CSR due to the area in which the project is being built in. This area is mainly farmland, and due to that, the soil strength might not be as high. Cutting the CSR from 12 inches to 8 inches might cause issues such as subbase failure that could be avoided if keeping CSR at 12 inches.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-21

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Set-up quantities for rock roadbed for areas where cement is not feasible						
FUNCTION:		Support Load					
BASELINE ASSUM	/IPTION:						
Specify 12 inches	Specify 12 inches of cement stabilization specified for entire alignment.						
PROPOSED ALTE	RNATIVE:						
Specify 18 inches roadbed.	Specify 18 inches of rock roadbed in areas where uneconomical or infeasible for construction of cement stabilized roadbed.						
BENEFITS		RISKS/CHALLENGES					
 Sets unit pri negotiating 	ce for bid items at letting rather than in construction	None apparent					
 Allows flexit stabilization 	pility to use different roadbed where necessary	•					
•	• •						
•	• •						
•	•						
•		•					
•		•					
		DESIGN SUGGESTION					

VE-21

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-21

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

VE-21

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

Т

TITLE:	Set-up quantities for rock roadbed for areas where cement is not feasible
DISCUSSION/JUS	STIFICATION:
The baseline situ	ation specifies constructing a cement stabilized roadbed for the entire US 641 alignment.
The proposal is to equipment is une include locations	o establish quantities for an equivalent rock roadbed thickness to be used where cement stabilization economical to use or where it is necessary to maintain traffic across the new alignment. This may where tying into the old road or maintain access across the new road during construction.
There are no per or conformance	ceived impacts to constructability, long-term maintenance, vehicular safety, overall project schedule with the BUILD Grant application.
There are benefi maintain traffic a it.	ts to the construction maintenance of traffic in that the rock roadbed allows the contractor to cross the new alignment whereas the cement must cure for a time period before allowing traffic on
IMPLEMENTATIO	ON CONSIDERATIONS:
None apparent.	

VE-22

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

TITLE:	Set-up quantities for granular embankment						
FUNCTION:		Suppo	ort Load				
BASELINE ASSUM	MPTION:						
No quantities ha	ve yet been set up for gravel embankment						
Provide quantitie	es for geotextile fabric and granular embar	kment					
i i ovide quantita		interie	•				
		D IGKO					
BENEFIIS		RISKS	CHALLENGES				
 Provides me 	eans to remediate areas anticipated to be	•	None apparent				
	or embankment construction						
		•					
•		•					
•		•					
•		•					
•		•					
•		•					

VE-22

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

Т

TITLE:	Set-up quantities for granular embankment
DISCUSSION/JUS	STIFICATION:
The VE team sug working platform the wetlands nea	gests to establish quantities for geotextile fabric and granular embankment to be used to provide a n for construction of the roadway embankments in areas anticipated to need remediation, such as ar the new bridges over Brushy Creek.
MPLEMENTATIO	ON CONSIDERATIONS:
None apparent.	

VE-23

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate the shoulder widening for guard	Eliminate the shoulder widening for guardrail and specify using 7-foot guardrail posts						
FUNCTION:	Convey Traffic						
BASELINE ASSUMPTION:							
Guardrail with 6-foot posts to be installed at locations to requires the shoulders to be widened an additional 1-foot	educe severity of crashes. The use of 6-foot posts to support the post.						
PROPOSED ALTERNATIVE:							
need to widen the shoulders an additional one-foot.	inty of clusics. The use of 7 root posts climinates the						
BENEFITS	RISKS/CHALLENGES						
Equal performance to guardrail with 6-foot posts	None apparent						
 Eliminates shoulder widening and thus reduces costs for earthwork and crushed stone base shoulder material 	• • • • •						
•							

SUGGESTION

VE-23

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Eliminate the shoulder widening for guardrail and specify using 7-foot guardrail posts

DISCUSSION/JUSTIFICATION:

The use of 7-foot guardrail posts in lieu of 6-foot guardrail posts is allowed by KYTC standards. For this project, which is an embankment in place earthwork job, minimizing the embankment in place needed to widen the typical section for one foot extra to install guardrail with 6-foot posts, plus the additional crushed stone base needed to construct the graded shoulder, would reduce the costs of the project with no impacts to performance of the guardrail system.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

VE-24

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE:	Review the Hazel Connector Options 1-5					
FUNCTION:		onvey Traffic				
BASELINE ASSUM	/IPTION:					
Preferred option	under review.					
PROPOSED ALTE	RNATIVE:					
Option 5 with mo	of herrow material for construction of m	es. Grade work to be don	ie for future template to			
suggestions on the	e of borrow material for construction of m	i project corridor. (Also se	20 VE-10 and VE-17 10			
suggestions on ti						
BENEFITS		ISKS/CHALLENGES				
Provides des	sired temporary connectivity at minimal	Potential increase or	f maintenance of graded area			
cost						
 Provides for 	more flexibility with future alignment	•				
extending so	buth to Tennessee					
Generates a	dditional borrow material for use in	•				
construction	n of the overall project, reducing costs					
and environ	mental impacts					
•		•				
		•				
•		•				
•		•				
•		•				

DESIGN SUGGESTION

VALUE ENGINEERING PROPOSAL VE-24 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VALUE ENGINEERING PROPOSAL VE-24 Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

VE-24

Kentucky Transportation Cabinet

US 641 Reconstruction (southern section), Item No. 1-314.20

Calloway County

TITLE: Review the Hazel Connector Options 1-5

DISCUSSION/JUSTIFICATION:

The VE team reviewed the Hazel Connector Options 1-5 and the results of review are shown below.

Creative Idea No. CT-13: The VE team does not recommend Hazel Connector to Stateline Road Options 1, 3 and 4

Hazel Connector to State Line Road, Option 1 - Significant cost with less flexibility for future project

Hazel Connector to State Line Road, Option 3 - Significant cost with less flexibility for future project

Hazel Connector to State Line Road, Option 4 - Significant cost with less flexibility for future project

Hazel Connector to Stateline Road Option 2 - This is option with lowest initial cost and most flexibility. However, if project is delayed a substantial amount of time, some level of access to State Line Road beyond the free flow connector could be warranted. Also, the VE team expressed a concern that the right-of-way purchased for this piece could be eligible to revert back to the original property owner, placing the extension of the overall project in jeopardy.

Creative Idea No. CT-14: Hazel Connector to Stateline Road - Option 2: Flatten backslope 6:1 (left side) to provide a borrow source: Based on review of the cross sections, there appears to be sufficient room on the proposed ROW to flatten the backslopes from 4:1 as shown to 6:1. This would provide additional material to construct the remainder of the roadway and make maintenance (mowing) easier as well as improve slope stability.

Creative Idea No. CT-15: Hazel Connector to Stateline Road - Option 5: Pave two lanes only: With the current plans to construct a separate free flow connector to the north side of Hazel, only a two lane temporary approach to State Line Road at the intersection with the free flow connector would be necessary. Cost savings on temporary pavement and medians could be realized with this approach.

IMPLEMENTATION CONSIDERATIONS:

None apparent.

Section 6: Appendices

Appendix A – Study Participants

	VALUE ENGINEERING STUDY ATTENDEES Kentucky Transportation Cabinet (KYTC) US 641 Reconstruction (southern section) Project, Item No. 1-314.20 Calloway County								
November		21	Name	Organization	Position	Office Phone Mobile Phone	Email		
	\checkmark	\checkmark		Brent Sweger	кутс	Manager, Quality Assurance Branch	502-782-4912 410 693 582Z	Brent.Sweger@ky.gov	
~			\checkmark	Chris Kuntz	кутс	Project Manager	200	<u>Chris.Kuntz@ky.gov</u>	
\checkmark	\checkmark	\checkmark	\checkmark	Jason Harrod	кутс	Transportation Engineering Technologist III	502-782-5059 502-564-3280	Justin.Harrod@ky.gov	
1			\checkmark	Gary Sharpe	Palmer Engineering	Consultant Project Manager	859-744-1218 859-221-6912	<u>GSharpe@palmernet.com</u>	
\checkmark	\checkmark	\checkmark	\checkmark	Jason Littleton	American Engineers	VE Team SME	502-245-3813 859-576-4192	<u>ilittleton@aei.cc</u>	
	V	V	\checkmark	Robert Martin	Qk4	VE Team SME	502-435-2140	<u>rmartin@qk4.com</u>	
\checkmark	\checkmark	\checkmark	\checkmark	Andy Gilley	Qk4	VE Team SME	270-801-0091 ext. 6301	agilley@gk4.com	
~	\checkmark	\checkmark		Pat Miller	RHA, LLC	VE Team Leader (CVS)	602-493-1947 480-773-8533	patrice@teamrha.com	
\checkmark			/	Tim Layson	FYTC	CO Dosign	502-564-3280	Tim. Layson@ky.gov	

T=via Telephone

	VALUE ENGINEERING STUDY ATTENDEES Kentucky Transportation Cabinet (KYTC) US 641 Reconstruction (southern section) Project, Item No. 1-314.20 Calloway County							
	November			Name	Organization	Position	Office Phone	Email
18	19	20	21	K (a) I -	1/11-	Nichtight		
\checkmark			V	kyle teat	KY IC	Engr.		
\checkmark			\checkmark	Susan Datman	KYTC	Prog. Managemen	t	SUSAN. Dafman@ly.gar
\checkmark	\checkmark		\checkmark	J. Mouke	60		52-225- 5288	
	1	V		Connor Schurm	11			Comm. Schurmaky, ow
			/	DAVID LINDEMAN	PALMER		859-744-1218	dindenand pulser not any
			\bigvee	Eileen Usughan	FHWA	Engineer	507-22-6741	eileen, Vaugan 2 dot-g
			\checkmark	DAVID WHITWORTH	FIWA	TEAM LEADER_	502-223-6741	david whitworthedot.g
			\checkmark	MICHALL LOZICUL	Patrus	Major Pajx Com	502 223 678	mibard. logula @ dot yr
								Ξ.

T=via Telephone

Appendix B – Pareto Cost Model

Cost model (following page) was prepared from the cost estimate data provided by Palmer Engineering. The model is organized to identify major tasks and KYTC's estimated costs of total project cost for the significant cost items. The cost models clearly illustrated the cost drivers for the project and were used to guide the VE study team during the workshop.

Item						# Line	
Code	Description	Est	imated Cost	% Total	% Cumm	Items	
0001	Paving	\$	18,195,694	46.4%	46.4%	13	9%
0002	Roadway	\$	11,704,963	29.9%	76.3%	73	49%
0004	Structures	\$	5,258,100	13.4%	89.7%	6	4%
0005	Mob & Demob	\$	2,392,014	6.1%	95.8%	2	1%
0003	Drainage	\$	1,641,450	4.2%	100.0%	54	36%
	TOTAL	\$	39,192,222			148	100%

Cost Observations

During the workshop, the VE team made the following observations of the cost estimate dated 10/22/2019:

- Earthwork cost seems low @ \$7.00/CY; should be more like \$18.00/CY
 - Project cost delta of \$7.5M higher (adds \$7.5M to project cost)
- Crushed stone cost seems low @ \$17.00/ton; should be more like \$25.00/ton
 - Project cost delta of \$1.1M higher (adds \$1.1M to project cost)
- Cement cost seems low @ \$101.20/ton; should be more like \$180.00/ton (per average unit prices from 2018)
 - Project cost delta of \$730,000 higher (adds \$730,000 to project cost)
- Brushy Creek bridge cost seems low at \$1.9M
- 10,000 LF of guardrail seems like a high quantity, especially for flat land
- \$750,000 of clearing and grubbing seems high for project that is characterized by an open field

Appendix C – Function Analysis

Function definition and analysis is the heart of Value Engineering. It is the primary activity that separates VE from all other "improvement" programs. The objective of this phase is to ensure the entire team agrees upon the purposes for the project elements. Furthermore, this phase assists with development of the most beneficial areas for continuing study.

The VE study team identified the functions of the **US 641 Reconstruction Project** using active verbs and measurable nouns. This process allowed the team to truly understand the functions associated with the project. A Random Function Identification Worksheet is provided below.

FUNCTION ID	ENTIFICATION	FUNCTION		
ACTIVE VERB	MEASUREABLE NOUN	CLASSIFICATION	COST?	RISK?
Reduce	Crashes	Higher Order		
Improve	Safety	Basic		
Cross	Creek	Secondary	YES	YES
Cross	Gas-line	Secondary	YES	YES
Meet	Schedule	Secondary		YES
Meet	Commitments	Secondary		YES
Stay-in	Footprint	Secondary		
Convey	Traffic	Secondary		
Connect	Roadway	Secondary		
Support	Load	Secondary	YES	
Support	Subgrade	Secondary	YES	
Create	Access	Secondary		
Maintain	Access	Secondary		
Control	Access	Secondary		
Minimize	Environmental- impacts*	Secondary	YES	YES
Optimize	Geometry	Secondary		
Maintain	Driver- expectations	Secondary		
Obligate	Funds	Lower Order (Assumed)		
Complete	Design	Lower Order (Assumed)		

*(includes wetlands, historic properties, channel changes)

High cost and/or high risk functions were identified using cost data and the VE study team expertise. The VE study team identified **Improve Safety** as the basic function of the project.

The definitions of the classifications are:

- **Higher Order Function** defines the specific goal or need for which the basic function exists and is outside the scope of the project under study.
- **Basic Function** defines the specific purpose(s) for which a project exists; it answers the question, "What must it do?"
- Secondary Function supports the basic function or required secondary function(s) and results for the specific design approach to achieve the basic function; answers the question, "What else do we want or does it do?"
- **Lower Order Function** is a function that is selected to initiate the project and is outside the scope of the subject under study.

Appendix D – Creative Idea List and Evaluation

Creative Idea List

The list of ideas from the study is shown on successive pages. Some of the ideas were selected for further development as represented in the previous alternatives.

Creative Idea List

IDEA NO.	Idea Title			
СС	Cross Creek			
CC-01	Cross Brushy Creek more perpendicular in an area outside the wetland	5		
CC-02	Eliminate existing Brushy Creek bridge	w/CC-01		
CC-03	Cross Brushy Creek more perpendicular in an area outside the wetland at 60 mph	5		
CG	Cross Gasline			
CG-01	Eliminate the Tom Taylor Trail over the gasline (east side)	4		
CG-02	Build land bridge over gaslines	DS		
CG-03	At Station 6355+00 (Heron Road), relocate the approach tie to Station 6343+00 to avoid gaslines	4		
CG-04	Shift the northern tie to US 641 to the northwest to connect back to old US 641 without crossing the gaslines	4		
CG-05	CG-05 Relocate the bridge over the tributary to Middle Fork of Clarks River to the same approximate location of the existing bridge, take the channel under the road at the new location, and run the channel change parallel to the roadway on the west side.			
CG-06	Eliminate the Heron Road tie at Station 6355+00	5		
OG	Optimize Geometry			
OG-01	Lower the design speed to 60 mph throughout the entire length of the project	3		
OG-02	Lower the design speed to 60 mph to the Hazel approach	w/0G-01		
OG-03	Use different superelevation table on the approaches	DS		
SL	Support Load			
SL-01	Use the 12-inch Cement Stabilized Roadbed (do not consider <i>Option 1, Potential Cost Savings</i>)	DS		
SL-02	Eliminate one 3-inch layer of base	5		
SL-03	Eliminate two 3-inch layers of base and replace with one 4.5-inch of base	5		
SL-04	Eliminate two 3-inch layers of base	5		

DS=Design Suggestion (Workbook)

DC=Design Comment (No Workbook)
Value Engineering Study Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

Creative Idea List

IDEA NO.	Idea Title	Score
	Set-up quantities for rock roadbed for areas where cement is not	
SL-05	feasible (i.e., tying into old road or maintaining access across the new	DS
	road during construction)	
SL-06	Set-up quantities for granular embankment	DS
СТ	Convey Traffic	
CT-01	Reduce the pavement on the outside shoulders from 10 feet to 4 feet	5
CT-02	Reduce the pavement on the outside shoulders from 10 feet to 8 feet	w/CT_01
CT-02	(Option 4, Potential Cost Savings)	W/CI-01
CT-02	Reduce through-lane pavement width from 12 feet to 11 feet (Option 3,	5
CT-03	Potential Cost Savings)	5
CT-04	Reduce median width from 48 feet to 40 feet (Option 2, Potential Cost	4
04	Savings)	4
CT-05	Reduce median width from 48 feet to 30 feet	w/CT-05
CT-06	Reduce bridge outside shoulder width from 12 feet to 4 feet	5
CT 07	Eliminate the shoulder widening for guardrail and specify using 7-foot	DS
01-07	guardrail posts	50
	Change from a 4-lane divided typical section to a 2-plus-1 roadway	E
C1-08	design	5
СТ-09	Provide more U-turn opportunities to minimize crossing conflict points	3
CT-10	Use RCUT at Midway only; use J-turns at the remaining locations	3
CT 11	Eliminate the Hazel connector and improve the intersection at State Line	4
CI-11	Road (i.e., roundabout)	4
CT 12	Provide a public information/education program on RCUTs, J-hooks and	DC
C1-12	other innovative intersection	DC
CT 12	VE team does not recommend Hazel Connector to Stateline Road	/CT 10
CI-15	Options 1, 3 and 4	W/CI-10
CT 14	Hazel Connector to Stateline Road - Option 2: Flatten backslope 6:1 (left	w/CT 19
	side) to provide a borrow source	W/CI-18
CT-15	Hazel Connector to Stateline Road - Option 5: Pave two lanes only	w/CT-18
CT-16	Reduce the outside shoulder width across bridges	w/CT-06

Value Engineering Study Kentucky Transportation Cabinet US 641 Reconstruction (southern section), Item No. 1-314.20 Calloway County

Creative Idea List

IDEA NO.	Idea Title	Score
CT-17	Eliminate the Hazel Connector and improve Brandon Road as an	Л
01-17	alternate northern connection	4
CT-18	Review the Hazel Connector Options 1-5	DS
CT-19	Review Maintenance of Traffic (MOT) Plan	DC
ME	Minimize Environmental-impacts	
ME-01	Avoid floodplain areas	w/CC-01

Value Engineering Study Kentucky Transportation Cabinet US 641 Reconstruction (southern section) Item No. 1-314.20 Calloway County

Evaluation Process

The VE study team members evaluated the ideas using a two-step process. The first step, to shorten the list, identified ideas that scored as follows:

- FF Unacceptable Impacts/Fatal Flaw (Has at least one fatal/unacceptable flaw)
- O/S Out of Scope
- ABD Already Being Done
- DC Design Comment (No cost impact, no Workbook)
- DS Design Suggestions (Not costed, Workbook)

This first-step evaluation scored the ideas as appropriate to eliminate them from further evaluation.

The second step scored the remaining ideas using the **Value Relationship Key shown on the following page** along with the idea's alignment with previously identified functions and performance criteria. The prioritization for further development and documentation is as follows:

Score =

- 5 Great Value meeting the criteria (Workbook)
- 4 Good Value meeting the criteria (Workbook)
- 3 Moderate Value meeting the criteria (No Workbook)
- 2 Poor Value (No Workbook)

Value Engineering Study Kentucky Transportation Cabinet US 641 Reconstruction (southern section) Item No. 1-314.20 Calloway County

Valu	ue Relationship Key		Value = <u>Function</u> Cost									
Rati	ng											
5.	Great Opportunity	F C	F+ C	F++ C	F++ C-	F++ C	F++ C+					
4.	Good Opportunity	F- C	F C-	F+ C	F+ C-	F+ C+	F++(*) C++					
3.	Moderate Value	F C-	F- C-	F++(C++	*)							
2.	Poor Value	F C	F C	F C+	F C++	F++([*] C++	*)					

*Is the Function improved to the point that it overcomes the high cost?

VALUI MAGI	E CUE H	KEY – E OF CHANGE
F	=	No impact to function
F-	=	Small negative impact to function
F	=	Large negative impact to function
F+	=	Small increase in function
F++	=	Large increase in function
С	=	No impact to cost
C-	=	Small decrease in cost
C	=	Large decrease in cost
C+	=	Small increase in cost
C++	=	Large increase in cost

Value Engineering Study Kentucky Transportation Cabinet US 641 Reconstruction (southern section) Item No. 1-314.20 Calloway County

Appendix E – Supporting Data

Risk Identification

When brainstorming alternatives during the creative phase, the VE team considered the following risks that were identified during the Information Phase kick-off meeting:

- Gas line expose entire pipe will increase cost and schedule
- Right-of-way change will impact schedule, cost and environmental document
- Commitments to City, County, federal government, public, KYTC will impact both cost and schedule
- Public acceptance of innovative intersection

CRASH PREDICTION REPORT

Crash Prediction Evaluation Report

November 20, 2019

Disclaimer

The Interactive Highway Design Model (IHSDM) software is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its content or use thereof. This document does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names may appear in this software and documentation only because they are considered essential to the objective of the software.

Limited Warranty and Limitations of Remedies

This software product is provided "as-is," without warranty of any kind-either expressed or implied (but not limited to the implied warranties of merchantability and fitness for a particular purpose). The FHWA do not warrant that the functions contained in the software will meet the end-user's requirements or that the operation of the software will be uninterrupted and error-free.

Under no circumstances will the FHWA be liable to the end-user for any damages or claimed lost profits, lost savings, or other incidental or consequential damages rising out of the use or inability to use the software (even if these organizations have been advised of the possibility of such damages), or for any claim by any other party.

Notice

The use of the IHSDM software is being done strictly on a voluntary basis. In exchange for provision of IHSDM, the user agrees that the Federal Highway Administration (FHWA), U.S. Department of Transportation and any other agency of the Federal Government shall not be responsible for any errors, damage or other liability that may result from any and all use of the software, including installation and testing of the software. The user further agrees to hold the FHWA and the Federal Government harmless from any resulting liability. The user agrees that this hold harmless provision shall flow to any person to whom or any entity to which the user provides the IHSDM software. It is the user's full responsibility to inform any person to whom or any entity to which it provides the IHSDM software of this hold harmless provision.

Table of Contents

Report Overview	1
Disclaimer Regarding Crash Prediction Method	2
Section Types	3
Section 1 Evaluation	3

List of Tables

Table Evaluation Highway - Homogeneous Segments (Section 1)	5
Table Predicted Highway Crash Rates and Frequencies Summary (Section 1)	10
Table Predicted Crash Frequencies and Rates by Highway Segment/Intersection (Section 1)	11
Table Predicted Crash Frequencies and Rates by Horizontal Design Element (Section 1)	18
Table Predicted Crash Frequencies by Year (Section 1)	19
Table Predicted Crash Type Distribution (Section 1)	20

List of Figures

Figure Crash Prediction Summary (Section 1)	4
---	---

Report Overview

Report Generated: Nov 20, 2019 2:46 PM Report Template: System: Multi-Page [System] (mlcpm2, Nov 11, 2019 7:50 AM)

Evaluation Date: Wed Nov 20 14:46:07 EST 2019 **IHSDM Version:** v15.0.0 (Oct 31, 2019) **Crash Prediction Module:** v10.0.0 (Oct 31, 2019)

User Name: jlittleton Organization Name: American Engineers, Inc Phone: 502-245-3813 E-Mail: jlittleton@aei.cc

Project Title: US 641 VE StudyProject Comment: Created Mon Nov 18 07:49:44 EST 2019Project Unit System: U.S. Customary

Highway Title: Palmer-US641 Highway Comment: Created Mon Nov 18 07:55:47 EST 2019 Highway Version: 1

Evaluation Title: 1-314.20 Baseline Evaluation

Evaluation Comment: This evaluation is intended to establish a baseline for comparison of improvement alternatives. This baseline specifies rural, multi-lane divided highway, 2 12ft lanes in each direction with a 4ft inside paved shoulder, 8ft outside paved shoulder, 2ft gravel shoulders beyond the pavement inside and outside and a 48 ft traversable median (inside driving lane to inside driving lane).

Minimum Location: 6129+50.000 Maximum Location: 6444+00.000 Policy for Superelevation: AASHTO 2011 U.S. Customary Calibration: HSM Configuration Crash Distribution: HSM Configuration Model/CMF: HSM Configuration First Year of Analysis: 2021 Last Year of Analysis: 2040 Empirical-Bayes Analysis: None First Year of Observed Crashes: Last Year of Observed Crashes:

Disclaimer Regarding Crash Prediction Method

IMPORTANT NOTICE ABOUT COMPARING RESULTS FROM HIGHWAY SAFETY MANUAL FIRST EDITION (2010) MODELS TO RESULTS FROM NEW MODELS DEVELOPED UNDER NCHRP PROJECTS 17-70 AND 17-58

Since the publication of the Highway Safety Manual - First Edition (HSM-1), in 2010 by the American Association of State Highway and Transportation Officials (AASHTO), multiple research efforts have been undertaken through the National Cooperative Highway Research Program (NCHRP) to develop safety performance models for road segment and intersection facility types that were not initially reflected in the HSM-1, in order to expand the breadth and depth of the HSM in the future.

The IHSDM Crash Prediction Module (CPM) is intended as a faithful implementation of HSM Part C predictive methods. As NCHRP projects to develop new predictive methods for the HSM are completed, FHWA works to incorporate the new methods into IHSDM, sometimes in advance of publication in the HSM. The following new crash predictive methods have been accepted by NCHRP project panels and incorporated into IHSDM, while pending AASHTO's approval for incorporation into a future edition of the HSM:

- Roundabouts: completed in 2018 under NCHRP Project 17-70, the new methods will provide improved outcomes for the safety analysis of roundabouts.

- 6+ lane and one-way urban/suburban arterials (including models for segments and intersections): completed under NCHRP Project 17-58.

However, in the absence of local calibration factors (see HSM-1 Part C, Appendix A for guidance on calibration of the predictive models), it is neither appropriate nor advisable to directly compare the results from new models (from NCHRP Projects 17-58 and 17-70) to results from HSM-1 models, as the models were not calibrated to the same base state data sets, and consequently can produce unexpected results. If local calibration factors are available and applied to both new models and HSM-1 models, then it may be appropriate to directly compare the results.[Note: Work being performed under NCHRP Project 17-72 (Update of Crash Modification Factors for the Highway Safety Manual) is expected to re-calibrate many of the old (HSM-1) and new (e.g., NCHRP 17-70) models to data from a single (or small number of) states, that would allow results from all models to be directly compared.]

The models produced for NCHRP Project 17-70 have independent value in terms of informing the design of a roundabout and assessing the effects of different design characteristics on the expected safety performance of a roundabout.

The HSM-1 interim method previously included in IHSDM for evaluating roundabouts on urban/suburban arterials (i.e., evaluating an existing intersection and then applying a Crash Modification Factor for replacing the existing intersection with a roundabout) has been deactivated in IHSDM, to minimize any confusion with the new roundabout methodology.

2

Section Types

Section 1 Evaluation

Section: Section 1 Evaluation Start Location: 6129+50.000 Evaluation End Location: 6444+00.000 Area Type: Rural Functional Class: Arterial Type of Alignment: Undivided/Divided Multilane Model Category: Rural, Multilane Calibration Factor: 4D=1.0;

Figure 1. Crash Prediction Summary (Section 1)

Seg. No.	Туре	Start Location (Sta. ft)	End Location (Sta. ft)	Length (ft)	Length(mi)	AADT	Left Lane Width (ft)	Right Lane Width (ft)	Left Shoulder Width (ft)	Right Shoulder Width (ft)	Median Width (ft)	Median Type	Effective Median Width (ft)	Lighting	Automated Speed Enforcement	Left Side Slope	Right Side Slope
1	4D	6129+50.000	6133+46.660	396.66	0.0751	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
2	4D	6133+46.660	6135+26.660	180.00	0.0341	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
3	4D	6135+26.660	6136+22.663	96.00	0.0182	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
4	4D	6136+22.663	6137+15.660	93.00	0.0176	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
5	4D	6137+15.660	6140+50.000	334.34	0.0633	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
6	4D	6140+50.000	6141+50.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
7	4D	6141+50.000	6154+43.940	1,293.94	0.2451	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
8	4D	6154+43.940	6154+50.000	6.06	0.0011	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
9	4D	6154+50.000	6155+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
10	4D	6155+00.000	6155+36.936	36.94	0.0070	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
11	4D	6155+36.936	6156+32.940	96.00	0.0182	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
12	4D	6156+32.940	6158+12.940	180.00	0.0341	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
13	4D	6158+12.940	6159+50.000	137.06	0.0260	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
14	4D	6159+50.000	6160+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
15	4D	6160+00.000	6160+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
16	4D	6160+50.000	6165+42.070	492.07	0.0932	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
17	4D	6165+42.070	6167+22.070	180.00	0.0341	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
18	4D	6167+22.070	6167+82.071	60.00	0.0114	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
19	4D	6167+82.071	6168+00.000	17.93	0.0034	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
20	4D	6168+00.000	6168+57.070	57.07	0.0108	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
21	4D	6168+57.070	6169+00.000	42.93	0.0081	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	50.00	false	false		
22	4D	6169+00.000	6169+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
23	4D	6169+50.000	6173+50.000	400.00	0.0758	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
24	4D	6173+50.000	6174+50.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
25	4D	6174+50.000	6189+76.290	1,526.29	0.2891	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
26	4D	6189+76.290	6190+00.000	23.71	0.0045	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
27	4D	6190+00.000	6190+51.290	51.29	0.0097	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
28	4D	6190+51.290	6191+11.290	60.00	0.0114	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
29	4D	6191+11.290	6192+91.290	180.00	0.0341	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
30	4D	6192+91.290	6193+00.000	8.71	0.0016	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
31	4D	6193+00.000	6193+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
32	4D	6193+50.000	6195+50.000	200.00	0.0379	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
33	4D	6195+50.000	6196+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		

 Table 1. Evaluation Highway - Homogeneous Segments (Section 1)

Seg. No.	Туре	Start Location (Sta. ft)	End Location (Sta. ft)	Length (ft)	Length(mi)	AADT	Left Lane Width (ft)	Right Lane Width (ft)	Left Shoulder Width (ft)	Right Shoulder Width (ft)	Median Width (ft)	Median Type	Effective Median Width (ft)	Lighting	Automated Speed Enforcement	Left Side Slope	Right Side Slope
34	4D	6196+00.000	6196+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
35	4D	6196+50.000	6197+50.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
36	4D	6197+50.000	6198+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
37	4D	6198+00.000	6199+00.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
38	4D	6199+00.000	6200+00.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
39	4D	6200+00.000	6201+00.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
40	4D	6201+00.000	6201+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
41	4D	6201+50.000	6202+50.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
42	4D	6202+50.000	6203+50.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
43	4D	6203+50.000	6204+50.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
44	4D	6204+50.000	6205+50.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
45	4D	6205+50.000	6206+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
46	4D	6206+00.000	6206+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
47	4D	6206+50.000	6217+50.000	1,100.00	0.2083	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
48	4D	6217+50.000	6218+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
49	4D	6218+00.000	6220+00.000	200.00	0.0379	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
50	4D	6220+00.000	6220+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
51	4D	6220+50.000	6223+50.000	300.00	0.0568	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
52	4D	6223+50.000	6224+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
53	4D	6224+00.000	6225+00.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
54	4D	6225+00.000	6225+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
55	4D	6225+50.000	6226+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
56	4D	6226+00.000	6227+00.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
57	4D	6227+00.000	6240+47.779	1,347.78	0.2553	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
58	4D	6240+47.779	6242+50.000	202.22	0.0383	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
59	4D	6242+50.000	6243+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
60	4D	6243+00.000	6247+50.000	450.00	0.0852	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
61	4D	6247+50.000	6248+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
62	4D	6248+00.000	6248+67.923	67.92	0.0129	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
63	4D	6248+67.923	6251+50.000	282.08	0.0534	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
64	4D	6251+50.000	6252+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
65	4D	6252+00.000	6253+00.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
66	4D	6253+00.000	6253+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
67	4D	6253+50.000	6259+50.000	600.00	0.1136	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
68	4D	6259+50.000	6260+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
	L		1	1	I	I	1										L

Seg. No.	Туре	Start Location (Sta. ft)	End Location (Sta. ft)	Length (ft)	Length(mi)	AADT	Left Lane Width (ft)	Right Lane Width (ft)	Left Shoulder Width (ft)	Right Shoulder Width (ft)	Median Width (ft)	Median Type	Effective Median Width (ft)	Lighting	Automated Speed Enforcement	Left Side Slope	Right Side Slope
69	4D	6260+00.000	6265+00.000	500.00	0.0947	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
70	4D	6265+00.000	6265+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
71	4D	6265+50.000	6267+50.000	200.00	0.0379	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
72	4D	6267+50.000	6268+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
73	4D	6268+00.000	6269+00.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
74	4D	6269+00.000	6269+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
75	4D	6269+50.000	6270+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
76	4D	6270+00.000	6270+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
77	4D	6270+50.000	6271+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
78	4D	6271+00.000	6273+50.000	250.00	0.0474	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
79	4D	6273+50.000	6275+50.000	200.00	0.0379	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
80	4D	6275+50.000	6276+50.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
81	4D	6276+50.000	6276+89.990	39.99	0.0076	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
82	4D	6276+89.990	6277+00.000	10.01	0.0019	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
83	4D	6277+00.000	6278+50.000	150.00	0.0284	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
84	4D	6278+50.000	6278+57.990	7.99	0.0015	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
85	4D	6278+57.990	6279+00.000	42.01	0.0080	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
86	4D	6279+00.000	6281+50.000	250.00	0.0474	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
87	4D	6281+50.000	6282+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
88	4D	6282+00.000	6283+00.000	100.00	0.0189	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
89	4D	6283+00.000	6285+00.000	200.00	0.0379	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
90	4D	6285+00.000	6285+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
91	4D	6285+50.000	6286+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
92	4D	6286+00.000	6288+00.000	200.00	0.0379	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
93	4D	6288+00.000	6288+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
94	4D	6288+50.000	6289+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
95	4D	6289+00.000	6289+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
96	4D	6289+50.000	6293+60.530	410.53	0.0777	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
97	4D	6293+60.530	6293+99.531	39.00	0.0074	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
98	4D	6293+99.531	6295+67.530	168.00	0.0318	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
99	4D	6295+67.530	6301+00.000	532.47	0.1008	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
100	4D	6301+00.000	6301+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
101	4D	6301+50.000	6302+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
102	4D	6302+00.000	6305+50.000	350.00	0.0663	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
103	4D	6305+50.000	6306+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
			•			•					, 1						

Seg. No.	Туре	Start Location (Sta. ft)	End Location (Sta. ft)	Length (ft)	Length(mi)	AADT	Left Lane Width (ft)	Right Lane Width (ft)	Left Shoulder Width (ft)	Right Shoulder Width (ft)	Median Width (ft)	Median Type	Effective Median Width (ft)	Lighting	Automated Speed Enforcement	Left Side Slope	Right Side Slope
104	4D	6306+00.000	6306+50.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
105	4D	6306+50.000	6312+50.000	600.00	0.1136	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
106	4D	6312+50.000	6313+00.000	50.00	0.0095	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
107	4D	6313+00.000	6320+82.000	782.00	0.1481	2021-2040: 5,984	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
108	4D	6320+82.000	6321+00.000	18.00	0.0034	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
109	4D	6321+00.000	6321+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
110	4D	6321+50.000	6323+50.000	200.00	0.0379	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
111	4D	6323+50.000	6324+00.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
112	4D	6324+00.000	6324+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
113	4D	6324+50.000	6325+00.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
114	4D	6325+00.000	6344+50.000	1,950.00	0.3693	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
115	4D	6344+50.000	6346+50.000	200.00	0.0379	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
116	4D	6346+50.000	6350+14.410	364.41	0.0690	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
117	4D	6350+14.410	6352+24.408	210.00	0.0398	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
118	4D	6352+24.408	6352+84.410	60.00	0.0114	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
119	4D	6352+84.410	6362+00.000	915.59	0.1734	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
120	4D	6362+00.000	6362+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
121	4D	6362+50.000	6364+50.000	200.00	0.0379	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
122	4D	6364+50.000	6373+80.630	930.63	0.1763	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
123	4D	6373+80.630	6374+40.635	60.00	0.0114	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
124	4D	6374+40.635	6374+50.000	9.37	0.0018	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
125	4D	6374+50.000	6375+50.000	100.00	0.0189	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
126	4D	6375+50.000	6376+50.630	100.63	0.0191	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
127	4D	6376+50.630	6377+00.000	49.37	0.0094	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
128	4D	6377+00.000	6379+00.000	200.00	0.0379	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
129	4D	6379+00.000	6379+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
130	4D	6379+50.000	6381+00.000	150.00	0.0284	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
131	4D	6381+00.000	6381+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
132	4D	6381+50.000	6384+00.000	250.00	0.0474	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
133	4D	6384+00.000	6384+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
134	4D	6384+50.000	6397+00.000	1,250.00	0.2367	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
135	4D	6397+00.000	6399+00.000	200.00	0.0379	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
136	4D	6399+00.000	6400+00.000	100.00	0.0189	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
137	4D	6400+00.000	6400+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
138	4D	6400+50.000	6401+50.000	100.00	0.0189	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		

Crash Prediction Evaluation Report

Section Types

Seg. No.	Туре	Start Location (Sta. ft)	End Location (Sta. ft)	Length (ft)	Length(mi)	AADT	Left Lane Width (ft)	Right Lane Width (ft)	Left Shoulder Width (ft)	Right Shoulder Width (ft)	Median Width (ft)	Median Type	Effective Median Width (ft)	Lighting	Automated Speed Enforcement	Left Side Slope	Right Side Slope
139	4D	6401+50.000	6402+50.000	100.00	0.0189	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
140	4D	6402+50.000	6404+00.000	150.00	0.0284	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
141	4D	6404+00.000	6407+00.000	300.00	0.0568	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
142	4D	6407+00.000	6408+50.000	150.00	0.0284	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
143	4D	6408+50.000	6409+00.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
144	4D	6409+00.000	6411+50.000	250.00	0.0474	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
145	4D	6411+50.000	6412+00.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
146	4D	6412+00.000	6412+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
147	4D	6412+50.000	6418+00.000	550.00	0.1042	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
148	4D	6418+00.000	6419+50.000	150.00	0.0284	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
149	4D	6419+50.000	6426+00.000	650.00	0.1231	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
150	4D	6426+00.000	6426+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
151	4D	6426+50.000	6427+50.000	100.00	0.0189	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
152	4D	6427+50.000	6429+50.000	200.00	0.0379	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
153	4D	6429+50.000	6430+00.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
154	4D	6430+00.000	6430+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
155	4D	6430+50.000	6431+52.940	102.94	0.0195	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
156	4D	6431+52.940	6431+74.135	21.20	0.0040	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
157	4D	6431+74.135	6433+36.470	162.34	0.0307	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
158	4D	6433+36.470	6440+00.000	663.53	0.1257	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
159	4D	6440+00.000	6440+50.000	50.00	0.0095	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
160	4D	6440+50.000	6442+31.440	181.44	0.0344	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
161	4D	6442+31.440	6443+50.000	118.56	0.0225	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	48.00	false	false		
162	4D	6443+50.000	6443+84.391	34.39	0.0065	2021-2040: 7,320	12.00	12.00	12.00	12.00	36.00	Traversable Median	44.00	false	false		
163	4D	6443+84.391	6444+00.000	15.61	0.0030	2021-2040: 7,320	12.00	12.00	2.00	2.00	36.00	Traversable Median	40.00	false	false		

First Year of Analysis	2021
Last Year of Analysis	2040
Evaluated Length (mi)	5.9564
Average Future Road AADT (vpd)	6,507
Predicted Crashes	
Total Crashes	139.79
Fatal and Injury Crashes	75.84
Fatal and Serious Injury Crashes	50.54
Property-Damage-Only Crashes	63.95
Percent of Total Predicted Crashes	
Percent Fatal and Injury Crashes (%)	54
Percent Fatal and Serious Injury Crashes (%)	36
Percent Property-Damage-Only Crashes (%)	46
Predicted Crash Rate	
Crash Rate (crashes/mi/yr)	1.1735
FI Crash Rate (crashes/mi/yr)	0.6366
FI no/C Crash Rate (crashes/mi/yr)	0.4242
PDO Crash Rate (crashes/mi/yr)	0.5368
Predicted Travel Crash Rate	
Total Travel (million veh-mi)	282.95
Travel Crash Rate (crashes/million veh-mi)	0.49
Travel FI Crash Rate (crashes/million veh-mi)	0.27
Travel FI no/C Crash Rate (crashes/million veh-mi)	0.18
Travel PDO Crash Rate (crashes/million veh-mi)	0.23

Table 2. Predicted Highway Crash Rates and Frequencies Summary (Section 1)

Segment Number/Intersectio n Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted FI no/C Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/millio n veh-mi)
1	6129+50.000	6133+46.660	0.0751	1.614	0.0807	0.0441	0.0296	0.0366	1.0743	0.49
2	6133+46.660	6135+26.660	0.0341	0.733	0.0366	0.0200	0.0134	0.0166	1.0743	0.49
3	6135+26.660	6136+22.663	0.0182	0.391	0.0195	0.0107	0.0072	0.0088	1.0743	0.49
4	6136+22.663	6137+15.660	0.0176	0.378	0.0189	0.0103	0.0069	0.0086	1.0743	0.49
5	6137+15.660	6140+50.000	0.0633	1.361	0.0680	0.0372	0.0250	0.0308	1.0743	0.49
6	6140+50.000	6141+50.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
7	6141+50.000	6154+43.940	0.2451	5.265	0.2633	0.1440	0.0967	0.1193	1.0743	0.49
8	6154+43.940	6154+50.000	0.0011	0.025	0.0012	0.0007	0.0005	0.0006	1.0743	0.49
9	6154+50.000	6155+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
10	6155+00.000	6155+36.936	0.0070	0.150	0.0075	0.0041	0.0028	0.0034	1.0743	0.49
11	6155+36.936	6156+32.940	0.0182	0.391	0.0195	0.0107	0.0072	0.0088	1.0743	0.49
12	6156+32.940	6158+12.940	0.0341	0.733	0.0366	0.0200	0.0134	0.0166	1.0743	0.49
13	6158+12.940	6159+50.000	0.0260	0.558	0.0279	0.0153	0.0102	0.0126	1.0743	0.49
14	6159+50.000	6160+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
15	6160+00.000	6160+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
16	6160+50.000	6165+42.070	0.0932	2.002	0.1001	0.0548	0.0368	0.0454	1.0743	0.49
17	6165+42.070	6167+22.070	0.0341	0.733	0.0366	0.0200	0.0134	0.0166	1.0743	0.49
18	6167+22.070	6167+82.071	0.0114	0.244	0.0122	0.0067	0.0045	0.0055	1.0743	0.49
19	6167+82.071	6168+00.000	0.0034	0.073	0.0036	0.0020	0.0013	0.0017	1.0743	0.49
20	6168+00.000	6168+57.070	0.0108	0.232	0.0116	0.0064	0.0043	0.0053	1.0743	0.49
21	6168+57.070	6169+00.000	0.0081	0.174	0.0087	0.0048	0.0032	0.0039	1.0699	0.49
22	6169+00.000	6169+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
23	6169+50.000	6173+50.000	0.0758	1.628	0.0814	0.0445	0.0299	0.0369	1.0743	0.49

 Table 3. Predicted Crash Frequencies and Rates by Highway Segment/Intersection (Section 1)

Segment Number/Intersectio n Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted FI no/C Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/millio n veh-mi)
24	6173+50.000	6174+50.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
25	6174+50.000	6189+76.290	0.2891	6.211	0.3105	0.1698	0.1140	0.1407	1.0743	0.49
26	6189+76.290	6190+00.000	0.0045	0.097	0.0048	0.0026	0.0018	0.0022	1.0743	0.49
27	6190+00.000	6190+51.290	0.0097	0.209	0.0104	0.0057	0.0038	0.0047	1.0743	0.49
28	6190+51.290	6191+11.290	0.0114	0.244	0.0122	0.0067	0.0045	0.0055	1.0743	0.49
29	6191+11.290	6192+91.290	0.0341	0.733	0.0366	0.0200	0.0134	0.0166	1.0743	0.49
30	6192+91.290	6193+00.000	0.0016	0.035	0.0018	0.0010	0.0007	0.0008	1.0743	0.49
31	6193+00.000	6193+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
32	6193+50.000	6195+50.000	0.0379	0.814	0.0407	0.0223	0.0149	0.0184	1.0743	0.49
33	6195+50.000	6196+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
34	6196+00.000	6196+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
35	6196+50.000	6197+50.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
36	6197+50.000	6198+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
37	6198+00.000	6199+00.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
38	6199+00.000	6200+00.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
39	6200+00.000	6201+00.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
40	6201+00.000	6201+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
41	6201+50.000	6202+50.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
42	6202+50.000	6203+50.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
43	6203+50.000	6204+50.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
44	6204+50.000	6205+50.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
45	6205+50.000	6206+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
46	6206+00.000	6206+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
47	6206+50.000	6217+50.000	0.2083	4.476	0.2238	0.1224	0.0822	0.1014	1.0743	0.49
48	6217+50.000	6218+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49

Segment Number/Intersectio n Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted FI no/C Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/millio n veh-mi)
49	6218+00.000	6220+00.000	0.0379	0.814	0.0407	0.0223	0.0149	0.0184	1.0743	0.49
50	6220+00.000	6220+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
51	6220+50.000	6223+50.000	0.0568	1.221	0.0610	0.0334	0.0224	0.0277	1.0743	0.49
52	6223+50.000	6224+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
53	6224+00.000	6225+00.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
54	6225+00.000	6225+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
55	6225+50.000	6226+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
56	6226+00.000	6227+00.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
57	6227+00.000	6240+47.779	0.2553	5.484	0.2742	0.1500	0.1007	0.1242	1.0743	0.49
58	6240+47.779	6242+50.000	0.0383	0.823	0.0411	0.0225	0.0151	0.0186	1.0743	0.49
59	6242+50.000	6243+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
60	6243+00.000	6247+50.000	0.0852	1.831	0.0916	0.0501	0.0336	0.0415	1.0743	0.49
61	6247+50.000	6248+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
62	6248+00.000	6248+67.923	0.0129	0.276	0.0138	0.0076	0.0051	0.0063	1.0743	0.49
63	6248+67.923	6251+50.000	0.0534	1.148	0.0574	0.0314	0.0211	0.0260	1.0743	0.49
64	6251+50.000	6252+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
65	6252+00.000	6253+00.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
66	6253+00.000	6253+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
67	6253+50.000	6259+50.000	0.1136	2.442	0.1221	0.0668	0.0448	0.0553	1.0743	0.49
68	6259+50.000	6260+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
69	6260+00.000	6265+00.000	0.0947	2.035	0.1017	0.0556	0.0374	0.0461	1.0743	0.49
70	6265+00.000	6265+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
71	6265+50.000	6267+50.000	0.0379	0.814	0.0407	0.0223	0.0149	0.0184	1.0743	0.49
72	6267+50.000	6268+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
73	6268+00.000	6269+00.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49

Segment Number/Intersectio n Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted FI no/C Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/millio n veh-mi)
74	6269+00.000	6269+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
75	6269+50.000	6270+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
76	6270+00.000	6270+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
77	6270+50.000	6271+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
78	6271+00.000	6273+50.000	0.0473	1.017	0.0509	0.0278	0.0187	0.0230	1.0743	0.49
79	6273+50.000	6275+50.000	0.0379	0.814	0.0407	0.0223	0.0149	0.0184	1.0743	0.49
80	6275+50.000	6276+50.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
81	6276+50.000	6276+89.990	0.0076	0.163	0.0081	0.0045	0.0030	0.0037	1.0743	0.49
82	6276+89.990	6277+00.000	0.0019	0.041	0.0020	0.0011	0.0007	0.0009	1.0743	0.49
83	6277+00.000	6278+50.000	0.0284	0.610	0.0305	0.0167	0.0112	0.0138	1.0743	0.49
84	6278+50.000	6278+57.990	0.0015	0.033	0.0016	0.0009	0.0006	0.0007	1.0743	0.49
85	6278+57.990	6279+00.000	0.0080	0.171	0.0085	0.0047	0.0031	0.0039	1.0743	0.49
86	6279+00.000	6281+50.000	0.0473	1.017	0.0509	0.0278	0.0187	0.0230	1.0743	0.49
87	6281+50.000	6282+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
88	6282+00.000	6283+00.000	0.0189	0.407	0.0203	0.0111	0.0075	0.0092	1.0743	0.49
89	6283+00.000	6285+00.000	0.0379	0.814	0.0407	0.0223	0.0149	0.0184	1.0743	0.49
90	6285+00.000	6285+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
91	6285+50.000	6286+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
92	6286+00.000	6288+00.000	0.0379	0.814	0.0407	0.0223	0.0149	0.0184	1.0743	0.49
93	6288+00.000	6288+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
94	6288+50.000	6289+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
95	6289+00.000	6289+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
96	6289+50.000	6293+60.530	0.0778	1.671	0.0835	0.0457	0.0307	0.0378	1.0743	0.49
97	6293+60.530	6293+99.531	0.0074	0.159	0.0079	0.0043	0.0029	0.0036	1.0743	0.49
98	6293+99.531	6295+67.530	0.0318	0.684	0.0342	0.0187	0.0126	0.0155	1.0743	0.49

Segment Number/Intersectio n Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted FI no/C Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/millio n veh-mi)
99	6295+67.530	6301+00.000	0.1008	2.167	0.1083	0.0593	0.0398	0.0491	1.0743	0.49
100	6301+00.000	6301+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
101	6301+50.000	6302+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
102	6302+00.000	6305+50.000	0.0663	1.424	0.0712	0.0389	0.0261	0.0323	1.0743	0.49
103	6305+50.000	6306+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
104	6306+00.000	6306+50.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
105	6306+50.000	6312+50.000	0.1136	2.442	0.1221	0.0668	0.0448	0.0553	1.0743	0.49
106	6312+50.000	6313+00.000	0.0095	0.203	0.0102	0.0056	0.0037	0.0046	1.0743	0.49
107	6313+00.000	6320+82.000	0.1481	3.182	0.1591	0.0870	0.0584	0.0721	1.0743	0.49
108	6320+82.000	6321+00.000	0.0034	0.090	0.0045	0.0024	0.0016	0.0021	1.3272	0.50
109	6321+00.000	6321+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
110	6321+50.000	6323+50.000	0.0379	1.005	0.0503	0.0270	0.0178	0.0233	1.3272	0.50
111	6323+50.000	6324+00.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
112	6324+00.000	6324+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
113	6324+50.000	6325+00.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
114	6325+00.000	6344+50.000	0.3693	9.803	0.4901	0.2632	0.1737	0.2269	1.3272	0.50
115	6344+50.000	6346+50.000	0.0379	1.005	0.0503	0.0270	0.0178	0.0233	1.3272	0.50
116	6346+50.000	6350+14.410	0.0690	1.832	0.0916	0.0492	0.0325	0.0424	1.3272	0.50
117	6350+14.410	6352+24.408	0.0398	1.056	0.0528	0.0283	0.0187	0.0244	1.3272	0.50
118	6352+24.408	6352+84.410	0.0114	0.302	0.0151	0.0081	0.0053	0.0070	1.3272	0.50
119	6352+84.410	6362+00.000	0.1734	4.603	0.2301	0.1236	0.0816	0.1066	1.3272	0.50
120	6362+00.000	6362+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
121	6362+50.000	6364+50.000	0.0379	1.005	0.0503	0.0270	0.0178	0.0233	1.3272	0.50
122	6364+50.000	6373+80.630	0.1763	4.678	0.2339	0.1256	0.0829	0.1083	1.3272	0.50
123	6373+80.630	6374+40.635	0.0114	0.302	0.0151	0.0081	0.0053	0.0070	1.3272	0.50

Segment Number/Intersectio n Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted FI no/C Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/millio n veh-mi)
124	6374+40.635	6374+50.000	0.0018	0.047	0.0024	0.0013	0.0008	0.0011	1.3272	0.50
125	6374+50.000	6375+50.000	0.0189	0.503	0.0251	0.0135	0.0089	0.0116	1.3272	0.50
126	6375+50.000	6376+50.630	0.0191	0.506	0.0253	0.0136	0.0090	0.0117	1.3272	0.50
127	6376+50.630	6377+00.000	0.0094	0.248	0.0124	0.0067	0.0044	0.0057	1.3272	0.50
128	6377+00.000	6379+00.000	0.0379	1.005	0.0503	0.0270	0.0178	0.0233	1.3272	0.50
129	6379+00.000	6379+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
130	6379+50.000	6381+00.000	0.0284	0.754	0.0377	0.0202	0.0134	0.0175	1.3272	0.50
131	6381+00.000	6381+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
132	6381+50.000	6384+00.000	0.0473	1.257	0.0628	0.0337	0.0223	0.0291	1.3272	0.50
133	6384+00.000	6384+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
134	6384+50.000	6397+00.000	0.2367	6.284	0.3142	0.1687	0.1114	0.1455	1.3272	0.50
135	6397+00.000	6399+00.000	0.0379	1.005	0.0503	0.0270	0.0178	0.0233	1.3272	0.50
136	6399+00.000	6400+00.000	0.0189	0.503	0.0251	0.0135	0.0089	0.0116	1.3272	0.50
137	6400+00.000	6400+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
138	6400+50.000	6401+50.000	0.0189	0.503	0.0251	0.0135	0.0089	0.0116	1.3272	0.50
139	6401+50.000	6402+50.000	0.0189	0.503	0.0251	0.0135	0.0089	0.0116	1.3272	0.50
140	6402+50.000	6404+00.000	0.0284	0.754	0.0377	0.0202	0.0134	0.0175	1.3272	0.50
141	6404+00.000	6407+00.000	0.0568	1.508	0.0754	0.0405	0.0267	0.0349	1.3272	0.50
142	6407+00.000	6408+50.000	0.0284	0.754	0.0377	0.0202	0.0134	0.0175	1.3272	0.50
143	6408+50.000	6409+00.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
144	6409+00.000	6411+50.000	0.0473	1.257	0.0628	0.0337	0.0223	0.0291	1.3272	0.50
145	6411+50.000	6412+00.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
146	6412+00.000	6412+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
147	6412+50.000	6418+00.000	0.1042	2.765	0.1382	0.0742	0.0490	0.0640	1.3272	0.50
148	6418+00.000	6419+50.000	0.0284	0.754	0.0377	0.0202	0.0134	0.0175	1.3272	0.50

Crash Prediction Evaluation Report

Section Types

Segment Number/Intersectio n Name/Cross Road	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted FI no/C Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/millio n veh-mi)
149	6419+50.000	6426+00.000	0.1231	3.268	0.1634	0.0877	0.0579	0.0756	1.3272	0.50
150	6426+00.000	6426+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
151	6426+50.000	6427+50.000	0.0189	0.503	0.0251	0.0135	0.0089	0.0116	1.3272	0.50
152	6427+50.000	6429+50.000	0.0379	1.005	0.0503	0.0270	0.0178	0.0233	1.3272	0.50
153	6429+50.000	6430+00.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
154	6430+00.000	6430+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
155	6430+50.000	6431+52.940	0.0195	0.517	0.0259	0.0139	0.0092	0.0120	1.3272	0.50
156	6431+52.940	6431+74.135	0.0040	0.106	0.0053	0.0029	0.0019	0.0025	1.3272	0.50
157	6431+74.135	6433+36.470	0.0307	0.816	0.0408	0.0219	0.0145	0.0189	1.3272	0.50
158	6433+36.470	6440+00.000	0.1257	3.336	0.1668	0.0896	0.0591	0.0772	1.3272	0.50
159	6440+00.000	6440+50.000	0.0095	0.251	0.0126	0.0067	0.0045	0.0058	1.3272	0.50
160	6440+50.000	6442+31.440	0.0344	0.912	0.0456	0.0245	0.0162	0.0211	1.3272	0.50
161	6442+31.440	6443+50.000	0.0225	0.596	0.0298	0.0160	0.0106	0.0138	1.3272	0.50
162	6443+50.000	6443+84.391	0.0065	0.174	0.0087	0.0047	0.0031	0.0040	1.3381	0.50
163	6443+84.391	6444+00.000	0.0030	0.094	0.0047	0.0025	0.0017	0.0022	1.5918	0.60
Total			5.9564	139.793	6.9896	3.7921	2.5269	3.1975	1.1735	

Title	Start Location (Sta. ft)	End Location (Sta. ft)	Length (mi)	Total Predicted Crashes for Evaluation Period	Predicted Total Crash Frequency (crashes/yr)	Predicted FI Crash Frequency (crashes/yr)	Predicted FI no/C Crash Frequency (crashes/yr)	Predicted PDO Crash Frequency (crashes/yr)	Predicted Crash Rate (crashes/mi/yr)	Predicted Travel Crash Rate (crashes/millio n veh-mi)
Tangent	6129+50.000	6136+22.663	0.1274	2.737	0.1369	0.0749	0.0503	0.0620	1.0743	0.49
Simple Curve 1	6136+22.663	6155+36.936	0.3626	7.790	0.3895	0.2130	0.1430	0.1765	1.0743	0.49
Tangent	6155+36.936	6167+82.071	0.2358	5.067	0.2533	0.1386	0.0930	0.1148	1.0743	0.49
Simple Curve 2	6167+82.071	6190+51.290	0.4298	9.233	0.4617	0.2525	0.1695	0.2092	1.0742	0.49
Tangent	6190+51.290	6240+47.779	0.9463	20.332	1.0166	0.5560	0.3733	0.4606	1.0743	0.49
Simple Curve 3	6240+47.779	6248+67.923	0.1553	3.337	0.1669	0.0913	0.0613	0.0756	1.0743	0.49
Tangent	6248+67.923	6278+57.990	0.5663	12.167	0.6084	0.3327	0.2234	0.2756	1.0743	0.49
Simple Curve 4	6278+57.990	6293+99.531	0.2920	6.273	0.3136	0.1715	0.1152	0.1421	1.0743	0.49
Tangent	6293+99.531	6352+24.408	1.1032	26.713	1.3356	0.7227	0.4803	0.6130	1.2107	0.49
Simple Curve 5	6352+24.408	6374+40.635	0.4197	11.141	0.5571	0.2991	0.1974	0.2579	1.3272	0.50
Tangent	6374+40.635	6431+74.135	1.0859	28.823	1.4412	0.7739	0.5108	0.6672	1.3272	0.50
Simple Curve 6	6431+74.135	6443+84.391	0.2292	6.085	0.3043	0.1634	0.1078	0.1409	1.3275	0.50
Tangent	6443+84.391	6444+00.000	0.0030	0.094	0.0047	0.0025	0.0017	0.0022	1.5918	0.60

Table 4. Predicted Crash Frequencies and Rates by Horizontal Design Element (Section 1)

Year	Total Crashes	FI Crashes	Percent FI (%)	FI/no C Crashes	Percent FI/no C (%)	PDO Crashes	Percent PDO (%)
2021	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2022	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2023	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2024	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2025	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2026	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2027	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2028	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2029	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2030	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2031	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2032	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2033	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2034	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2035	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2036	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2037	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2038	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2039	6.99	3.79	54.254	2.53	36.153	3.20	45.746
2040	6.99	3.79	54.254	2.53	36.153	3.20	45.746
Total	139.79	75.84	54.254	50.54	36.153	63.95	45.746
Average	6.99	3.79	54.254	2.53	36.153	3.20	45.746

 Table 5. Predicted Crash Frequencies by Year (Section 1)

Note: *Fatal and Injury Crashes* and *Property Damage Only Crashes* do not necessarily sum up to *Total Crashes* because the distribution of these three crashes had been derived independently.

	Court Torres	Fatal an	d Injury	Fatal and Se	erious Injury	Property D	amage Only	Total	
Element Type	Crash Type	Crashes	Crashes (%)	Crashes	Crashes (%)	Crashes	Crashes (%)	Crashes	Crashes (%)
Highway Segment	Right-Angle Collision	3.64	2.6	2.27	1.6	2.62	1.9	6.01	4.3
Highway Segment	Head-on Collision	0.99	0.7	0.91	0.7	0.13	0.1	0.84	0.6
Highway Segment	Rear-end Collision	12.36	8.8	5.76	4.1	5.63	4.0	16.22	11.6
Highway Segment	Total Multiple Vehicle Crashes	16.99	12.2	8.95	6.4	8.38	6.0	23.07	16.5
Highway Segment	Total Highway Segment Crashes	75.84	54.3	50.54	36.2	63.95	45.7	139.79	100.0
Highway Segment	Other Collision	1.67	1.2	1.16	0.8	1.53	1.1	3.35	2.4
Highway Segment	Sideswipe	2.05	1.5	1.11	0.8	3.39	2.4	6.01	4.3
Highway Segment	Single	55.14	39.4	39.32	28.1	50.65	36.2	107.36	76.8
	Total Crashes	75.84	54.3	50.54	36.2	63.95	45.7	139.79	100.0

 Table 6. Predicted Crash Type Distribution (Section 1)

Note: Fatal and Injury Crashes and Property Damage Only Crashes do not necessarily sum up to Total Crashes because the distribution of these three crashes had been derived independently.

US 641 CORRIDOR CALLOWAY COUNTY

Improving Safety and Mobility

EXISTING CONDITIONS --TRAFFIC

- Average Daily Traffic
 - State Line to MP 3.56 (Midway): 5,900 Vehicles per day
 - MP 3.56 to MP 6.67 (Murray): 7,300 Vehicles per Day
- Traffic is Not Growing
- Truck Percentages:
 - 9% (2016)
 - · 12% (2007

EXISTING CONDITIONS --CRASH HISTORY

January 1, 2004 - June 30, 2017

Calloway County US 641

1/1/2004 to 6/30/2017

- Single Vehicle (304)
- Rear End (111)
- Angle (32)
- Head On (21)
- Sideswipe-Opposite Direction (27)
- Sideswipe-Same Direction (15)
- Backing (8)
- Opposing Left Turn (10)

Calloway County US 641 1/1/2004 to 6/30/2017

- Wet Condition (149)
- Water Standing (8)

June 30, 2016 - June 30, 2017

Calloway County US 641

6/30/2012 to 6/30/2017

- Single Vehicle (122)
- Rear End (40)
- Angle (16)
- Head On (8)
- Sideswipe-Opposite Direction (11)
- Sideswipe-Same Direction (2)
- Backing (6)
- Opposing Left Turn (1)

Calloway County US 641 <u>6/30/2012 to 6/30/2017</u> A Fatality (6)

Injury (53)

Page 163 of 213

- Wet Condition (70)
- Water Standing (8)

PROJECT EVOLUTION PREVIOUS STUDIES AND PROJECTS

- 2002 Alternatives Study
- 2011 Preliminary Engineering

- 2012 Value Engineering Study RHA
- 2017 HSIP (Highway Safety Improvement Program)
 - Roadway Departure Corridor Analysis
 - Limited Funding for Spot Improvements

EARLY STUDIES

2002 ALTERNATIVES STUDY 2012 VALUE ENGINEERING STUDY – RHA

VE # 201201 US 641 Widening Item #1-314.10 & # 1-314.20 Project Calloway County, Kentucky Value Engineering Study Report - Final

Study Dates: January 24-27, 2012 Final Report Date: April 20, 2012

Kentucky Transportation Cabinet Division of Professional Services 200 Mero Street Frankfort, KY 40622

Contact: Renee L. Hoekstra, CVS (623) 266-3943

ALTERNATIVES STUDY DECEMBER 2002

Issues and Concerns Identified

- Existing Narrow Lanes and Shoulders
- Anticipated Traffic Growth (2%)
- Heavy Truck Traffic
- Future Capacity Deficiencies
- Adverse Community Impacts

ALTERNATIVES STUDY DECEMBER 2002

- Alternatives Considered 4 Lanes
 - Reconstruction West (State Line to Midway) and East (Midway to Middle Fork of Clarks River)
 - Reconstruction West of Existing Alignment
 - Reconstruction Along Existing Alignment (North of Hazel to KY 1550)
 - Reconstruction Along Existing Alignment (From Midway to KY 1550)

2011 PRELIMINARY ENGINEERING STUDY 2012 VALUE ENGINEERING STUDY

- Refined Study Corridors
 - Along Existing US 641 Corridor
 - Improved 2-lanes
 - 3-lanes
 - West of Existing US 641 Corridor 4 Lanes

VALUE ENGINEERING STUDY APRIL 2012

- Key Recommendations
 - Reduce median width to 30 feet
 - Partially use US 641 as Alternative 3

- Use 2+I Typical Section or 2-Lane with Auxiliary Lane
- Revise alignment to lessen impacts to gas line
 - Avoid gas line by using existing US 641 from Clarks River to KY 1828
- Reduce typical section —lane width, ditch width, etc.
- Provide an eastern alignment

2017 HSIP ROADWAY DEPARTURE PROJECT CALLOWAY COUNTY US 641 – MP 0.498 TO MP 3.556

- Approximately \$1,400,000 Planned Improvements
- Constructed 2017-2018
 Addressed Critical Crash Locations

MOVING FORWARD

- No Project Activity 2012 until 2017
 - 2017 -- HSIP Roadway Departure Project
- 2018 -- Re-Start Project
 - Project was changed from State Funded to Federal Funding – Environmental Documentation (NEPA) now required
- 2018 -- BUILD Grant -- Better Utilizing Investments to Leverage Development
 - \$23,000,000 BUILD Grant
 - \$32,500,000 KYTC Contribution (Federal and State)
 - \$1,000,000 Local Contributions
 - \$56,500,000 Total Project Funding
 - Design, Right of Way, Utilities, Construction
 - Must be under construction October 2020
 - Must be completed by September 2025

US 641 CALLOWAY COUNTY FY 2018 BUILD Grant

PRELIMINARY ENGINEERING

- Environmental Studies August 2018
- Initial Historic Eligibility Report submitted February 2019
 - Preliminary Information Provided in October 2018
 - Identified Adverse Effects to Historic Properties for Alternatives I and 2
- Alternatives 4, 4A, and Alternatives 5 developed
 - Alternatives 4 and 4A were west of existing US 641
 - Alternative 5 was east of existing US 641
- Alternative 3 (along existing US 641) was refined
 - 5-lane option ultimately eliminated from consideration
 - 3-lane option carried forward

PRELIMINARY ENGINEERING

- Preliminary Line and Grade Meeting February 8, 2019
 - Alternative 4A was identified as Preliminarily Preferred
- Public Meeting Planned for March 12, 2019
- TDOT Coordination
 - Bi-State Agreement Drafted
- Public Meeting March 12, 2019
 - Public Preferences
 - Alternative 3 20%
 - Alternative 4 19%
 - Alternative 4A 47%
 - Alternative 5 10%
 - Do Nothing 4%

PRELIMINARY ENGINEERING

- Plans and Cross-Sections submitted to Geotechnical Branch --February 22, 2019
- Preliminary Right of Way Plans submitted March 1, 2019
 - Jump-Start Title Research and Appraisals
- PRESS RELEASE KYTC Preferred Alternative 4A April 8, 2019
- TDOT identified Preferred Alternative 41 April 30, 2019

PRELIMINARY ENGINEERING 50% PLANS

- 50% Review Meeting June 5, 2019
 - RCUTs (J-Turns) at Tom Taylor Trail, Midway Road, Phillips Lane
 - · Maintenance of Traffic -- closures allowed for up to two weeks
 - Lawring Drive, Phillips Lane, Tom Taylor Trail
 - · Diversions will be used at State Line Road, Midway Road, and Brandon Road
 - Connectivity to Hazel
 - Improve E.W. Miller Street/ Road—"T" intersections, Free Flowing
 - New Alignment Free Flowing
 - Gas Line Coordination TransCanada Gas (TC Energy)
 - 3 Lines (Two 30-inch lines, one 36-in line)
 - Minimum 7 feet cover under driving lanes
 - Concrete Cap 3-feet over gas lines
 - Drainage
 - 2 Dimensional HECRAS Analysis suggested
 - Ponding Easements will not be required

PRELIMINARY ENGINEERING RIGHT OF WAY

- Preliminary Right of Way Plans submitted March 1, 2019
 - Jump-Start Title Research and Appraisals
- Stage I Final Right of Way Plans June 24, 2019
- Stage II Right of Way Plans Hazel Connector September 27, 2019
 - To be determined after Public Hearing
 - Three Options for Hazel Connector
 - E.W. Miller Street / Road "T" Intersection
 - E.W. Miller Street / Road Free Flow
 - New Alignment Free Flow Selected
 - We are buying Right of Way

PUBLIC HEARING AUGUST 22, 2019

Not as Well Attended

 Some Opposition to the Identified Preferred Alternative 4A

- Preference for Free-Flowing Intersections for Hazel Connector
 - KYTC Preference New Alignment north of E.
 W. Miller Street / Road

STATE LINE ROAD TO HAZEL CONNECTOR WE NEED YOUR INPUT!

- Tie-Down in Tennessee will not be constructed for 8 to 10 years.
- How can we best address the section between State Line Road and the Hazel Connector?
- Right of Way will be Purchased.
- Five Options Under Consideration
 - Option 1: Build Final Section and Barricade
 - Option 2: Grade and Drain, Maintain Access to severed properties
 - Option 3: Build Final Section but place surface for one-lane in each direction and Barricade
 - Option 4: Grade and Drain for Final Section, Pave only one lane in each direction.
 - Option 5: Build and pave only one direction, grade and drain opposite direction

CURRENT ESTIMATE

Current Estimate:	\$43,111,444
Pavement:	46%
Roadway:	30%
 Drainage: 	4%
 Structures: 	13%
 Mobilization / Demobilization 	n: 6%

COST SAVING MEASURES WE HAVE CONSIDERED WE NEED YOUR

- Reduce Thickness of Cement Stabilized Roadbed
 - Cost Reduction: \$309,000 (15% reduction)
- Reduce Median Width from 48 feet to 40 feet
 - Exclude areas between Tom Taylor Trail and Phillips Lane with RCUT (J-Turns)
 - Cost Reduction: \$604,000 (12% Reduction) (86,000 cu. yd.)
- Reduce Mainline Driving Lane Widths from 12 feet to 11 feet
 - Cost Reduction: \$610,000
- Reduce Outside Shoulder Width from 10 feet paved to 8 feet paved

\$1,900,000

- Cost Reduction: \$403,000
- Total Cost Reduction Opportunities:

PAVEMENT DESIGN

- Design Methodology
 - AASHTOWare Pavement ME
 - KYTC Web-based Pavement Design Catalog (developed from AASHTOWare Pavement ME
- Input Parameters
 - Mainline
 - Subgrade CBR 3
 - Average Annual Daily Truck Traffic (AADTT): 600
 - Average Annual Daily Traffic (AADT): 7320
 - 8% Trucks

MAINLINE PAVEMENT DESIGN

AASHTOWare Pavement ME

- I.5 inches CL3 ASPH Surf 0.5B PG64-22
- 3.0 inches CL3 ASPH Base 1.00D PG64-22
- 4.0 inches Crushed Stone Base
- I2 inches Cement Stabilized Roadbed
- KYTC Web-based Catalog
 - I.5 inches CL3 ASPH Surf 0.5B PG64-22
 - 3.0 inches CL3 ASPH Base 1.00D PG64-22
 - 3.0 inches CL3 ASPH Base 1.00D PG64-22
 - 3.0 inches CL3 ASPH Base 1.00D PG64-22
 - 6.0 inches Crushed Stone Base
 - 8.0 inches Cement Stabilized Roadbed

		PAVEMENT DESIGN CALLOWAY COUNTY, U Item No. 1-314.20	S 641																
		Subrgrade CBR	8																
		AADTT 60	0			A4OT	7320		AADIT		Deskotie	Nee Gover							
						N Thucks	7.00%		872.4 085.0		62	inches							
		Mainline and Major Approa	ches							Minor Ap	proaches								
						ADIT = 6	60			ANTT - LOO	A407T+100	AADTT+S0				WOTT # 1	0		
	1.000	Trial Designs			26	3	4	5	6		1			4	5			8	
no. et	Layer	Landard Contains	and the second	TREE IS	THURSON A	TOTAS .	100345	inches.	DC195	In other	ECTA-S	Includes.	THE DAY	increes.	TRUES.	and we	10.00	increas.	105
10 04 22		Australi Gara	1.4	2.0	1.4	4.0	16	2.0	10	100		1.0		2.5	9.6	2.2	100	26	
00.64-22		Second Date	1.0	3.0	5.0	10	50	28	18	3.0			1.4	0.0	0.0	2.5	2.8	24	5.
DC 64.12		Accinat Bace	8.0	3.0	0.0	8.0	5.0	9.6	85	80	80			0.0	0.0	0.0	0.0	0.0	100
00.04.22		Annual Gane	2.0	2.0	0.0	0.0	10	0.0	0.0	50				2.0	0.0	0.0	3.0	0.0	
0.01-24		Constant Etyme Firste	20	4.0	6.0	40	40	20	80	40	26	2.0	- 22	8.0	10.0	8.0	10.0	80	- 310
		Comont Stabilized Roadbed	12.0	8.0	8.0	12.0	12.0	12.0	12.0	0.0	0.0	0.9	4.0	0.0	0.0	0.0	0.0	0.0	0.0
		Total Parement Trickness	29.5	25.5	215	26.6	30.0	29.5	50.0	17.5	17.6	17:5	17.5	18.0	15.0	14.0	16.0	14.5	16
Pavement Perfor	mance																		
Terminal IRI(180)	00)		159,93	160.01	166.73	163.32	157.59	181.45	159.95	162.26	167.59	156.1	163.23	159.11	159.45	159.07	158.10	155.80	155
Total Pavenent Pr	ormanent Ded	irmation (0.25 inch)	0.32	0.34	0.49	0.40	0.30	0.35	0.35	0.4	0.26	0.28	0.10	0.29	0.28	0.27	0.27	0,28	0.2
Asphat Detters-Up	Fabgue Crac	king (% izne area - 10%)	1.86	1.00	1.22	1.00	1.50	1.85	1.00	1.05	1.20	1.00	1.00	1.86	1.80	100	1.00	1.80	12
sphat I nema u	rading (set)	mile - 1,000 teet;	847,13	847.73	1104.20	203.01	173.20	920.80	852.56	010.05	646.35	300.30	940.35	1027.00	1057.58	1100.95	1024 25	672.55	152
sprint 1 sp cown	Fangue Lrac	eng (loan) mile -2,000 loan	200.10	210 93	200.04	262.96	209.20	250 19	204 02			100.00		20055	208.99	100.02	201.84	208.08	10/

Appendix F AASHTOWARE Pavement ME Design Input Guide

SUMMARY OF RESULTS PAVEMENT DESIGN ANALYSES AASHTO PAVEMENT ME

PAVEMENT DESIGN CALLOWAY COUNTY, US 641 Item No. 1-314.20

Subrgrade CBR	3				
AADTT	600	AADT	7320	AADTT	Desirable Pipe Cover
		% Trucks	7.00%	512.4	42 inches
			8.00%	585.6	

	Mainline and Major Approac	hes				Minor Approaches												
				A	ADTT = 6	00			AADTT = 60D	AADTT=100	AADTT=50		AADTT = 10					
	Trial Designs	1	2	2A	3	4	5	6	7	1	2	3	4	5	6	7	8	9
	Layer	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches
PG 64-22	1 Asphalt Surface	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
PG 64-22	2 Asphalt Base	3.0	3.0	3.0	3.0	3.5	3.0	3.5	3.0	3.0	3.0	3.0	3.5	3.5	2.3	2.3	2.5	2.5
PG 64-22	3 Asphalt Base	3.0	3.0	3.0	3.0	3.0	3.5	3.5	3.0	3.0	3.0	3.0	0.0	0.0	2.3	2.3	2.5	2.5
PG 64-22	4 Asphalt Base	3.0	3.0	0.0	3.0	3.0	3.5	3.5	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
PG 64-22	5 Asphalt Base	3.0	3.0	0.0	0.0	3.0	0.0	0.0	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
	6 Crushed Stone Base	4.0	4.0	6.0	4.0	4.0	6.0	6.0	4.0	4.0	4.0	4.0	8.0	10.0	8.0	10.0	8.0	10.0
	7 Cement Stabilized Roadbed	12,0	8.0	8.0	12.0	12.0	12.0	12.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Total Pavement Thickness	29.5	25.5	21.5	26.5	30.0	29.5	30.0	17.5	17.5	17.5	17.5	13.0	15.0	14.0	16.0	14.5	16.5
Pavement Perfo	ormance																	
Terminal IRI (160	0.00)	158.93	160.01	168.73	163.32	157.59	161.45	159.95	162.28	157.59	156.1	153.23	159.11	159.45	159.07	158.18	155.68	155.17
Total Pavement I	Permanent Deformation (0.25 inch)	0.32	0.34	0.49	0.40	0.30	0.36	0.35	0.4	0.29	0.26	0.19	0.29	0.28	0.27	0.27	0.26	0.25
Asphalt Bottom-L	Up Fatigue Cracking (% lane area 10%)	1.86	1.86	1.87	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86
Asphalt Thermal	Cracking (feet / mile - 1,000 feet)	847.73	847.73	1104.20	953.91	773.26	920.80	832.56	846.35	846.35	856.35	846.35	1027.00	1097.98	1100.95	1024.23	772.35	735.79
Asphalt Top-Dow	vn Fatigue Cracking (feet / mile –2,000 feet	280,18	266.93	259.59	262.96	269.26	269.19	269.62	256.95	256.56	256 53	256.49	260.98	258.94	258.82	257.84	258.58	257.74
Permanent Defo	rmation Asphalt Only (0 25 inch)	0.07	0.07	0.13	0.11	0.06	0.10	0.09	0.6	0.04	0.03	0.02	0.04	0.04	0.04	0.04	0.04	0.04

MINOR APPROACHES PAVEMENT DESIGN

Input Parameters

- Minor Approaches
 - Subgrade CBR 3
 - Average Annual Daily Truck Traffic (AADTT): 100
 - Variations from AADTT--10 to 100

AASHTOWare Pavement ME

- I.5 inches CL3 ASPH Surf 0.5D PG64-22
- 3.0 inches CL3 ASPH Base 1.00D PG64-22
- 4.0 inches Crushed Stone Base

Appendix F AASHTOWARE Pavement ME Design Input Guide

QUESTIONS / COMMENTS

PLEASE NOTE THAT THE FOLLOWING OUT-BRIEF PRESENTATION WAS GIVEN ON NOVEMBER 21, 2019. INFORMATION CONTAINED THEREIN MAY DIFFER FROM WHAT IS PRESENTED IN EARLIER SECTIONS OF THIS REPORT THAT HAVE BEEN MORE FULLY VETTED POST-WORKSHOP.

US 641 RECONSTRUCTION (CALLOWAY COUNTY) ITEM NO. 1-314.20

VALUE ENGINEERING STUDY OUT-BRIEF PRESENTATION

Page 187 of 213

NOVEMBER 21, 2019

VE Study Team

- Andy Gilley, PE (Qk4)
- Justin Harrod, VIP (KYTC)
- □ Jason Littleton, PE (AEI)
- Robert Martin, PE (Qk4)
- Connor Schurman, EIT (KYTC)
- Brent Sweger, PE (KYTC)
- Pat Miller, CVS (RHA) VE Team Leader

Left to right: Andy, Justin, Rob, Jason, Brent, Connor

VE Job Plan

Baseline Design

- Review Hazel Connector 5 Options
- Review pavement design

Workshop Objectives

- Evaluate \$1.9M Potential Cost Savings 4 Options
- Review MOT plan
- Identify combinations of alternates that bring the project value (i.e., constructability, access)

Project Functions

6

- Basic Function (What must this project do?)
 - Improve Safety (Build safer route between Murray and Paris)
- Higher Order Function
 - Reduce Crashes
- Brainstormed alternatives using key functions
 - Cross Creek (CC)
 - Cross Gasline (CG)
 - Optimize Geometry (OG)
 - Support Load (SL)
 - Convey Traffic (CT)
 - Minimize Environmental-impacts (ME)

Performance Attributes

- Constructability: construct the design efficiently
- Maintenance of traffic: local access to residents during construction
- Maintainability: ability to maintain project at appropriate O&M cost
- □ Safety: achieve an annual reduction of crashes
- **Schedule:** obligate funding by September 30, 2020
- Conformance to BUILD grant: what is the deviation from the BUILD grant?

□ <u>38</u> Ideas brainstormed

18 Alternatives developed

<u>8</u> Design Suggestions developed

<u>1</u> Design Comment identified

Function

COST

Value

VE Proposal Summary

9

Summary of Value Engineering Proposals

			PERF	ORMANCE IM	РАСТ		COST IMPACT					
IDEA NO.	IDEA TITLE	Construct- ability	Construct- Maintenance Sat ability of Traffic Sat		Schedule	Conformance to BUILD Grant	Initial Cost Savings / (Add)	O&M	Total Life Cycle Cost			
СС	Cross Creek											
CC-01	Cross Brushy Creek more perpendicular in an area outside the wetland	No impact	No impact	No impact	Impacted	No impact	\$378,000	\$0	\$378,000			
CC-03	Cross Brushy Creek more perpendicular in an area outside the wetland at 60 mph	No impact	No impact	No impact	Impacted	No impact	\$679,000	\$0	\$679,000			
CG	Cross Gasline											
CG-01	Eliminate the Tom Taylor Trail over the gasline (east side)	No impact	No impact	Improves	No impact	No impact	\$597,000	\$26,000	\$623,000			
CG-02	Build land bridge over gaslines	No impact	Improves	Improves	Improves	No impact						
CG-03	At 6355+00 (Heron Road), relocate the approach tie to 6343+00 to avoid gaslines	Impacted	No impact	No impact	Impacted	No impact	(\$19,000)	\$0	(\$19,000)			
CG-04	Shift the northern tie to US 641 to the northwest to connect back to old US 641 without crossing the gaslines	Impacted	No impact	No impact	No impact	No impact	\$370,000	\$17,000	\$387,000			
CG-05	Relocate the bridge over the tributary to Middle Fork of Clarks River to the same approximate location of the existing bridge, take the channel under the road at the new location, and run the channel change parallel to the roadway on the west side	No impact	No impact	Impacted	Impacted	No impact	\$87,000	\$0	\$87,000			
CG-06	Eliminate the Heron Road tie at 6355+00	No impact	No impact	Improves	Improves	No impact	\$111,000	\$0	\$111,000			

PAVEMENT DESIGN (SL-01, SL-02, SL-03, SL-04)

PAVEMENT DESIGN CALLOWAY COUNTY, US 641 Item No. 1-314.20

Subrgrade CBR	3				
AADTT	600	AADT	7320	AADTT	Desirable Pipe Cover
		% Trucks	7.00%	512.4	42 inches
			8.00%	585.6	

	Mainline and Major Approa	aches			Minor Approaches														
					1	ADTT = 6	00			AADTT = 600	AADTT=100	AADTT=50				ADTT = 1	0		
	Trial Designs		1	2	2A	3	4	5	6	7	1	2	3	4	5	6	7	8	9
	Layer		inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches
PG 64-22	1 Asphalt Surface		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
PG 64-22	2 Asphalt Base		3.0	3.0	3.0	3.0	3.5	3.0	3.5	3.0	3.0	3.0	3.0	3.5	3.5	2.3	2.3	2.5	2.5
PG 64-22	3 Asphalt Base		3.0	3.0	3.0	3.0	3.0	3.5	3.5	3.0	3.0	3.0	3.0	0.0	0.0	2.3	2.3	2.5	2.5
PG 64-22	4 Asphalt Base		3.0	3.0	0.0	3.0	3.0	3.5	3.5	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
PG 64-22	5 Asphalt Base		3.0	3.0	0.0	0.0	3.0	0.0	0.0	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
	6 Crushed Stone Base		4.0	4.0	6.0	4.0	4.0	6.0	6.0	4.0	4.0	4.0	4.0	8.0	10.0	8.0	10.0	8.0	10.0
	7 Cement Stabilized Roadbed		12.0	8.0	8.0	12.0	12.0	12.0	12.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Total Pavement Thickness		29.5	25.5	21.5	26.5	30.0	29.5	30.0	17.5	17.5	17.5	17.5	13.0	15.0	14.0	16.0	14.5	16.5
KYTC Payamont I	Performance	KYTC Reliability																	
Terminal IRI (160)	00)	05%	158.03	150.85	169.69	178 55	157 50	161.45	150.05	182.11	157.40	156 18	153 17	150 11	150.45	150.07	159 19	155.69	155 17
Total Payament P	ormanent Deformation (0.25 inch)	0.5%	0.22	0.24	0.40	0.42	0 20	0.26	0.25	0.20	0.20	0.25	0.10	0.20	0.20	0.27	0.27	0.28	0.25
Acobalt Rottom-Un	n Estique Cracking (% Jane area 10%)	0.5%	1.98	1.08	1.07	1.98	1.08	1.98	1.98	1.06	1.08	1.98	1.98	1.98	1.98	1.98	1.98	1.98	1.98
Asphalt Dottom-Op	Practice (feet / mile 1 000 feet)	0.0%	047 72	047.72	1120 41	2425.10	772.28	000 00	022.68	047.72	047.72	087.02	047.72	1027.00	1007.00	1100.05	1024.22	772.26	725 70
Asphalt Tee Deve	Facking (reet / mile 1,000 feet)	90%	200.10	047.73	250.07	2420.19	280.28	280.40	032.00	047.73	258.55	256.52	258.40	260.00	260.04	260.02	267.04	260.60	257.74
Asphalt Top-Down	n Fatigue Cracking (feet / mile 2,000 feet	90%	280.18	202.21	258.07	208.07	208.20	209.19	208.02	200.84	200.00	200.02	200.48	200.98	208.84	208.82	207.84	208.08	207.74
Permanent Deform	nation Asphalt Only (0.25 Inch)	90%	0.07	0.07	0.12	0.13	0.00	0.10	0.09	0.00	0.04	0.03	0.02	0.04	0.04	0.04	0.04	0.04	0.04

			AADTT = 600							
	Trial Designs		VE #1A	VE #1B	VE #2A	VE #2B	VE #3A	VE #3B	GWS #1A	GWS #1B
	Layer		inches	inches	inches	inches	inches	inches	inches	inches
PG 64-22	1 Asphalt Surface		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
PG 64-22	2 Asphalt Base		3.0	3.0	3.0	3.0	3.0	3.0	4.5	4.5
PG 64-22	3 Asphalt Base		3.0	3.0	3.0	3.0	3.0	3.0	4.5	4.5
PG 64-22	4 Asphalt Base		0.0	0.0	3.0	3.0	4.5	4.5	0.0	0.0
PG 64-22	5 Asphalt Base		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6 Crushed Stone Base		4.0	6.0	4.0	6.0	4.0	6.0	4.0	6.0
	7 Cement Stabilized Roadbed		12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
	Total Pavement Thickness		23.5	25.5	26.5	28.5	28.0	30.0	26.5	28.5
		кутс								
KYTC Pavement P	erformance Parameters	Reliability								
Terminal IRI (160.00))	95%	179.94	179.57	176.55	176.24	174.61	174.33	161.73	161.49
Total Pavement Per	manent Deformation (0.25 inch)	95%	0.49	0.48	0.42	0.41	0.37	0.37	0.38	0.37
Asphalt Bottom-Up I	Fatigue Cracking (% lane area 10%)	95%	1.86	1.86	1.86	1.86	1.86	1.86	1.86	1.86
Asphalt Thermal Cra	acking (feet / mile 1,000 feet)	90%	2452.77	2452.77	2425.19	2425.19	2411.40	2411.40	854.63	864.28
Asphalt Top-Down F	Fatigue Cracking (feet / mile2,000 feet	90%	257.42	257.55	268.07	273.09	304.03	317.58	258.22	259.23
Permanent Deforma	tion Asphalt Only (0.25 inch)	90%	0.15	0.16	0.13	0.13	0.11	0.11	0.10	0.10
		AASHTO								
AASHTO Pavemen	t Performance Parameters	Reliability								
Terminal IRI (172.00))	90%	167.60	167.25	164.39	164.10	162.55	162.29	150.49	150.27
Total Pavement Per	manent Deformation (0.75 inch)	90%	0.46	0.45	0.39	0.38	0.35	0.34	0.36	0.35
Asphalt Bottom-Up I	Fatigue Cracking (% lane area 25%)	90%	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45
Asphalt Thermal Cra	90%	2452.77	2452.77	2425.19	2425.19	2411.40	2411.40	854.63	864.28	
Asphalt Top-Down F	90%	257.42	257.55	268.07	273.09	304.03	317.58	258.22	259.23	
Permanent Deforma	tion Asphalt Only (0.25 inch)	90%	0.15	0.16	0.13	0.13 Pag	e 196 (of 213	0.10	0.10

REDUCE PAVEMENT WIDTH (CT-01, CT-03)

11

CT-01: Reduce the pavement on the outside shoulders from 10 feet to 4 feet **Cost Avoid - \$528,000**

Baseline 10' Paved Shoulder

CT-03: Reduce through-lane pavement width from 12 feet to 11 feet (*Option 3, Potential Cost Savings*) Cost Avoid - \$610,000+129,000=\$739,000

CT-04: Reduce median width from 48 feet to 40 feet (Option 2, Potential Cost Savings)

Cost Avoid - \$604,000

12

CT-06: Reduce bridge outside shoulder width from 12 feet to 4 feet

18'

13

CT-19: Review Maintenance of Traffic (MOT) Plan

Diversions
 Brandon Road
 Midway Road
 Access Points

GASLINES (CG-01, CG-02)

CG-06: Eliminate the Heron Road tie at 6355+00

Cost Avoid - \$111,000

CC-01: Cross Brushy Creek more perpendicular in an area outside the wetland

Cost Avoid - \$398,000
CC-03: Cross Brushy Creek more perpendicular in an area outside the wetland at 60 mph

Cost Avoid - \$679,000

CT-18: Review the Hazel Connector Options 1-5

CT-18: Review the Hazel Connector Options 1-5

Design Suggestion

CT-11: Eliminate the Hazel connector and improve the intersection at State Line Road (i.e., roundabout)

CT-17: Eliminate the Hazel Connector and improve Brandon Road as an alternate northern connection

22

Cost Avoid - \$1,598,128

CT-08: Change from a 4-lane divided typical section to a 2-plus-1 roadway design

23

Questions

Next Steps

Draft Report due Thursday, December 5, 2019

Value Engineering Study US 641 Reconstruction (southern section) Item No. 1-314.2 Kentucky Transportation Cabinet Calloway County

Value Engineering Study – Agenda

Kentucky Transportation Cabinet

Agenda November 18-21, 2019

Study Location

KYTC Office, 200 Mero Street, Frankfort, KY – Conference Center C117

Day 1: Monday, November 18, 2019

INFORMATION PHASE

- 9:00-9:15 Introductions (All) & Brief Overview of the VE Process (Team Leader-Pat Miller)
- 9:15-10:30 Project Overview, Presentation (KYTC Project Manager Chris Kuntz, Palmer Engineering Gary Sharpe)
- 10:30-10:45 Break
- 10:45-12:00 Project Goals & Constraints, Workshop Objectives, Identify Key Performance Attributes Identify Project Risks
 - 12:00-1:00 Lunch
 - 1:00-1:15 Review Cost Estimate / Cost Model
 - 1:15-1:45 VE Team Observations

FUNCTION ANALYSIS PHASE

- 1:45-2:15 Function Identification of Project Elements
- 2:15-2:30 Break

CREATIVE PHASE

- 2:30-5:00 Brainstorm Ideas / Alternatives
 - 5:00 Adjourn

Day 2: Tuesday, November 19, 2019

8:00-8:05 Check-in with VE Team

CREATIVE PHASE (continued)

- 8:05-10:00 Brainstorm Ideas / Alternatives
- 10:00-10:15 Break
- 10:15-12:00 Brainstorm Ideas / Alternatives
- 12:00-1:00 Lunch

EVALUATION PHASE

1:00-2:30 Evaluation of Ideas – Team Assignments for Development

DEVELOPMENT PHASE

- 2:30-2:45 Break
- 2:45-5:00 Develop / Cost Alternatives
 - 5:00 Adjourn

Value Engineering Study US 641 Reconstruction (southern section) Item No. 1-314.2 Kentucky Transportation Cabinet Calloway County

Day 3: Wednesday, November 20, 2019

8:00-8:05 Check-in with VE Team

DEVELOPMENT PHASE

8:05-12:00 Develop / Cost Alternatives

12:00-1:00 Lunch

1:00-5:00 Develop / Cost Alternatives Group Review of VE Alternatives / Prepare Presentation 5:00 Adjourn

Day 4: Thursday, November 21, 2019

8:00-8:05 Check-in with VE Team

DEVELOPMENT PHASE/PRESENTATION PHASE

- 8:05-10:00 Group Review of VE Alternatives
 - Presentation Run-through
- 10:00-11:30 Presentation of VE Alternatives / Out-brief Meeting (Management, Stakeholders)
- 11:30-12:00 Wrap-up with VE Team
 - 12:00 Adjourn